Awesome Weak-Shot Learning

Overview

Awesome Weak-Shot Learning Awesome

In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base categories have full annotations while novel categories only have weak annotations. In different tasks, weak annotation could be provided in different forms, e.g., noisy label for classification, image label for object detection, image label/bounding box for segmentation.

The comparison between weak-shot learning and zero/few-shot learning is illustrated below. In all three settings, all categories are split into non-overlapped base categories and novel categories. In all three settings, base categories have abundant fully-annotated training samples. In zero-shot learning, novel categories have no training samples, so class-level representations are required to bridge the gap between base categories and novel categories. In few-shot learning, novel categories have limited training samples. In weak-shot leanring, novel categories have abundant weakly-annotated training samples.

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Survey

  • Li Niu: "Weak Novel Categories without Tears: A Survey on Weak-Shot Learning." arXiv preprint arXiv:2110.02651 (2021). [arXiv]

Weak-Shot Classification

Base category: clean label; Novel category: noisy label (weak-shot)

  • Junjie Chen, Li Niu, Liu Liu, Liqing Zhang: "Weak-shot Fine-grained Classification via Similarity Transfer." NeurIPS (2021) [arXiv] [code]

Weak-Shot Object Detection

Base category: bounding box; Novel category: image label (chaotic names: mixed-supervised, cross-supervised, partially-supervised, weak-shot)

  • Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross Girshick, Trevor Darrell, Kate Saenko: "LSDA: Large Scale Detection Through Adaptation." NIPS (2014) [paper] [code]
  • Joseph Redmon, Ali Farhadi: "YOLO9000: Better, Faster, Stronger." CVPR (2017) [paper] [code]
  • Bharat Singh, Hengduo Li, Abhishek Sharma, Larry S. Davis: "R-FCN-3000 at 30fps: Decoupling detection and classification." CVPR (2018) [paper] [code]
  • Yan Li, Junge Zhang, Kaiqi Huang, Jianguo Zhang: "Mixed Supervised Object Detection with Robust Objectness Transfer." T-PAMI (2018) [paper] [arXiv]
  • Jason Kuen, Federico Perazzi, Zhe Lin, Jianming Zhang, Yap-Peng Tan: "Scaling Object Detection by Transferring Classification Weights." ICCV (2019) [paper] [code]
  • Yuanyi Zhong, Jianfeng Wang, Jian Peng, Lei Zhang: "Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer." ECCV (2020) [paper] [arXiv] [code]
  • Ye Guo, Yali Li, Shengjin Wang: "Cs-r-fcn: Cross-supervised Learning for Large-scale Object Detection." ICASSP (2020) [arXiv]
  • Zitian Chen, Zhiqiang Shen, Jiahui Yu, Erik Learned-Miller: "Cross-Supervised Object Detection." arXiv preprint arXiv:2006.15056 (2020). [arXiv]
  • Yan Liu, Zhijie Zhang, Li Niu, Junjie Chen, Liqing Zhang: "Mixed Supervised Object Detection by Transferring Mask Prior and Semantic Similarity." NeurIPS (2021) [code]

Weak-Shot Semantic Segmentation

Base category: semantic mask; Novel category: image label (weak-shot)

  • Siyuan Zhou, Li Niu, Jianlou Si, Chen Qian, Liqing Zhang: "Weak-shot Semantic Segmentation by Transferring Semantic Affinity and Boundary." arXiv preprint arXiv:2110.01519 (2021). [arXiv]

Weak-Shot Instance Segmentation

Base category: instance mask; Novel category: bounding box (partially-supervised)

  • Ronghang Hu, Piotr Dollar, Kaiming He, Trevor Darrell, Ross Girshick: "Learning to Segment Every Thing." CVPR (2018) [paper] [code]
  • Weicheng Kuo, Anelia Angelova, Jitendra Malik, Tsung-Yi Lin: "ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors." ICCV (2019) [paper] [arXiv]
  • Yanzhao Zhou, Xin Wang, Jianbin Jiao, Trevor Darrell, Fisher Yu: "Learning Saliency Propagation for Semi-Supervised Instance Segmentation." CVPR (2020) [paper] [code]
  • Qi Fan, Lei Ke, Wenjie Pei, Chi-Keung Tang, Yu-Wing Tai: "Commonality-Parsing Network across Shape and Appearance for Partially Supervised Instance Segmentation." ECCV (2020) [arXiv] [code]
  • David Biertimpel, Sindi Shkodrani, Anil S. Baslamisli, Nora Baka: "Prior to Segment: Foreground Cues for Weakly Annotated Classes in Partially Supervised Instance Segmentation." arXiv preprint arXiv:2011.11787 (2020) [arXiv] [code]
  • Vighnesh Birodkar, Zhichao Lu, Siyang Li, Vivek Rathod, Jonathan Huang: "The Surprising Impact of Mask-head Architecture on Novel Class Segmentation." arXiv preprint arXiv:2104.00613 (2021) [arXiv] [code]
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022