test

Overview

Lidar-data-decode

In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any huge c++-based lib or ROS under Ubuntu

  1. in lidar data frame decode part:
  • Supports just LSC32(LeiShen Intelligent System) at the moment(you can also change the parameters to fit other lidars like velodyne, robosense...).
  • Takes a pcap file recorded by LSC32 lidar as input.
  • Extracts all Frames from the pcap file.
  • Saves data-frames: Data frames are saved as Pointcloud files (.pcd) and/or as Text files(.txt)
  • Can be parameterizes by yaml file.
  1. in dataset prepare part:
  • Files format conversion(txt to bin, if you want to make your datasets like KITTI format)
  • Files rename
  • Data frames visualization
Output

Below a sample out of 2 Points in a point cloud file

All Point Cloud Text-Files have follwoing fields: Time [musec], X [m], Y [m], Z [m], ID, Intensity, Latitude [Deg], Longitudes [Deg], Distance [m] 2795827803, 0.032293, 5.781942, -1.549291, 0, 6, 0.320, -15.000, 5.986

All Point Cloud PCD-Files have follwoing fields:

  1. X-Coordinate
  2. Y-Coordinate
  3. Z-Coordinate
  4. Intensity
Dependencies
  1. for lidar frame decode: Veloparser has follwoing package dependencies:
  • dpkt
  • numpy
  • tqdm
  1. for lidar frame Visualization:
  • mayavi
  • torch
  • opencv-python (using pip install opencv-python)
Run

Firstly, clone this project by: "git clone https://github.com/hitxing/Lidar-data-decode.git"

Because empty folders can not be upload on Github, after you clone this project, please create some empty folders as follows: 20210301215614471

a. for lidar frame decode:

  1. make sure test.pcap is in dir .\input\test.pcap
  2. check your parameters in params.yaml, then, run: "python main.py --path=.\input\test.pcap --out-dir=.\output --config=.\params.yaml"

after this operation, you can get your Text files/PCD files as follows:

​ 1)Text files in .\output\velodynevlp16\data_ascii:

1614600893415

​ 2)PCD files in .\output\velodynevlp16\data_pcl:

1614600836040

b. for Format conversion and rename:

If you want to make your datasets like KITTI format(bin files), you should convert your txt files to bin files at first, if you want to make a datset like nuscenes(pcd files), just go to next step and ignore that.

  1. put all your txt files to dir .\txt2bin\txt and run ''python txt2bin.py"

then, your txt files will convert to bin format and saved in dir ./txt2bin/bin like this:

1614602160574

  1. To make a test dataset like KITTI format, the next step is to rename your files like 000000.bin, for bin files(also fits for pcd files, change the parameters in file_rename.py, line 31), run "python file_rename.py", you can get your test dataset in the dir .\txt2bin\bin like this:

    1614602847542

c. for visualization your data frames(just for bin files now)

Please make sure that all of those packages are installed (pip or conda).

  1. copy your bin files in dir .\txt2bin\bin to your own dir(default is in .\visualization)

  2. run "python point_visul.py", the visual will like this:

    1614603301315

Note that lidar data in 000000.bin is not complete(after 000000.bin is complete), that why the visualization result is as above, you can delect this frame when you make your own test dataset .000001.bin will like this:

1614603496357

If you want to make your full dataset and labeling your data frame, I hope here will be helpful(https://github.com/Gltina/ACP-3Detection).

Note

Thanks ArashJavan a lot for provide this fantastic project! lidar data frame decode part in Lidar-data-decode is based on https://github.com/ArashJavan/veloparser which Supports Velodyne VLP16, At this moment, Lidar-data-decode supports LSC32-151A andLSC32-151C, actually, this project can support any lidar as long as you change the parameters follow the corresponding technical manual.

The reason why i wrote this project: a. I could not find any simple way without installing ROS (Robot operating software) or other huge c++-based lib that does 'just' extract the point clouds from pcap-file. b. Provide a reference to expand this project to fit your own lidar and make your own datasets

Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
This is a GUI program that will generate a word search puzzle image

Word Search Puzzle Generator Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing Cont

11 Feb 22, 2022
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022