Syntax-Aware Action Targeting for Video Captioning

Related tags

Deep LearningSAAT
Overview

Syntax-Aware Action Targeting for Video Captioning

Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). The implementation is based on "Consensus-based Sequence Training for Video Captioning".

Dependencies

(Check out the coco-caption and cider projects into your working directory)

Data

Data can be downloaded here (1.6GB). This folder contains:

  • input/msrvtt: annotatated captions (note that val_videodatainfo.json is a symbolic link to train_videodatainfo.json)
  • output/feature: extracted features of IRv2, C3D and Category embeddings
  • output/metadata: preprocessed annotations
  • output/model_svo/xe: model file and generated captions on test videos, the reported result can be reproduced by the model provided in this folder (CIDEr 49.1 for XE training)

Test

make -f SpecifiedMakefile test [options]

Please refer to the Makefile (and opts_svo.py file) for the set of available train/test options. For example, to reproduce the reported result

make -f Makefile_msrvtt_svo test GID=0 EXP_NAME=xe FEATS="irv2 c3d category" BFEATS="roi_feat roi_box" USE_RL=0 CST=0 USE_MIXER=0 SCB_CAPTIONS=0 LOGLEVEL=DEBUG LAMBDA=20

Train

To train the model using XE loss

make -f Makefile_msrvtt_svo train GID=0 EXP_NAME=xe FEATS="irv2 c3d category" BFEATS="roi_feat roi_box" USE_RL=0 CST=0 USE_MIXER=0 SCB_CAPTIONS=0 LOGLEVEL=DEBUG MAX_EPOCH=100 LAMBDA=20

If you want to change the input features, modify the FEATS variable in above commands.

Citation

@InProceedings{Zheng_2020_CVPR,
author = {Zheng, Qi and Wang, Chaoyue and Tao, Dacheng},
title = {Syntax-Aware Action Targeting for Video Captioning},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Acknowledgements

  • Pytorch implementation of CST
  • PyTorch implementation of SCST
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023