A curated list of neural network pruning resources.

Overview

Awesome Pruning Awesome

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Please feel free to pull requests or open an issue to add papers.

Table of Contents

Type of Pruning

Type F W Other
Explanation Filter pruning Weight pruning other types

2020

Title Venue Type Code
HYDRA: Pruning Adversarially Robust Neural Networks NeurIPS W PyTorch(Author)
Logarithmic Pruning is All You Need NeurIPS W -
Directional Pruning of Deep Neural Networks NeurIPS W -
Movement Pruning: Adaptive Sparsity by Fine-Tuning NeurIPS W PyTorch(Author)
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot NeurIPS W PyTorch(Author)
Neuron Merging: Compensating for Pruned Neurons NeurIPS F PyTorch(Author)
Neuron-level Structured Pruning using Polarization Regularizer NeurIPS F PyTorch(Author)
SCOP: Scientific Control for Reliable Neural Network Pruning NeurIPS F -
Storage Efficient and Dynamic Flexible Runtime Channel Pruning via Deep Reinforcement Learning NeurIPS F -
The Generalization-Stability Tradeoff In Neural Network Pruning NeurIPS F PyTorch(Author)
Pruning Filter in Filter NeurIPS Other PyTorch(Author)
Position-based Scaled Gradient for Model Quantization and Pruning NeurIPS Other PyTorch(Author)
Bayesian Bits: Unifying Quantization and Pruning NeurIPS Other -
Pruning neural networks without any data by iteratively conserving synaptic flow NeurIPS Other PyTorch(Author)
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning ECCV (Oral) F PyTorch(Author)
DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation ECCV F -
DHP: Differentiable Meta Pruning via HyperNetworks ECCV F PyTorch(Author)
Meta-Learning with Network Pruning ECCV W -
Accelerating CNN Training by Pruning Activation Gradients ECCV W -
DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search ECCV Other -
Differentiable Joint Pruning and Quantization for Hardware Efficiency ECCV Other -
Channel Pruning via Automatic Structure Search IJCAI F PyTorch(Author)
Adversarial Neural Pruning with Latent Vulnerability Suppression ICML W -
Proving the Lottery Ticket Hypothesis: Pruning is All You Need ICML W -
Soft Threshold Weight Reparameterization for Learnable Sparsity ICML WF Pytorch(Author)
Network Pruning by Greedy Subnetwork Selection ICML F -
Operation-Aware Soft Channel Pruning using Differentiable Masks ICML F -
DropNet: Reducing Neural Network Complexity via Iterative Pruning ICML F -
Towards Efficient Model Compression via Learned Global Ranking CVPR (Oral) F Pytorch(Author)
HRank: Filter Pruning using High-Rank Feature Map CVPR (Oral) F Pytorch(Author)
Neural Network Pruning with Residual-Connections and Limited-Data CVPR (Oral) F -
Multi-Dimensional Pruning: A Unified Framework for Model Compression CVPR (Oral) WF -
DMCP: Differentiable Markov Channel Pruning for Neural Networks CVPR (Oral) F TensorFlow(Author)
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression CVPR F PyTorch(Author)
Few Sample Knowledge Distillation for Efficient Network Compression CVPR F -
Discrete Model Compression With Resource Constraint for Deep Neural Networks CVPR F -
Structured Compression by Weight Encryption for Unstructured Pruning and Quantization CVPR W -
Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration CVPR F -
APQ: Joint Search for Network Architecture, Pruning and Quantization Policy CVPR F -
Comparing Rewinding and Fine-tuning in Neural Network Pruning ICLR (Oral) WF TensorFlow(Author)
A Signal Propagation Perspective for Pruning Neural Networks at Initialization ICLR (Spotlight) W -
ProxSGD: Training Structured Neural Networks under Regularization and Constraints ICLR W TF+PT(Author)
One-Shot Pruning of Recurrent Neural Networks by Jacobian Spectrum Evaluation ICLR W -
Lookahead: A Far-sighted Alternative of Magnitude-based Pruning ICLR W PyTorch(Author)
Dynamic Model Pruning with Feedback ICLR WF -
Provable Filter Pruning for Efficient Neural Networks ICLR F -
Data-Independent Neural Pruning via Coresets ICLR W -
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates AAAI F -
DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks AAAI Other -
Pruning from Scratch AAAI Other -

2019

Title Venue Type Code
Network Pruning via Transformable Architecture Search NeurIPS F PyTorch(Author)
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks NeurIPS F PyTorch(Author)
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask NeurIPS W TensorFlow(Author)
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers NeurIPS W -
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks NeurIPS W PyTorch(Author)
AutoPrune: Automatic Network Pruning by Regularizing Auxiliary Parameters NeurIPS W -
Model Compression with Adversarial Robustness: A Unified Optimization Framework NeurIPS Other PyTorch(Author)
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning ICCV F PyTorch(Author)
Accelerate CNN via Recursive Bayesian Pruning ICCV F -
Adversarial Robustness vs Model Compression, or Both? ICCV W PyTorch(Author)
Learning Filter Basis for Convolutional Neural Network Compression ICCV Other -
Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration CVPR (Oral) F PyTorch(Author)
Towards Optimal Structured CNN Pruning via Generative Adversarial Learning CVPR F PyTorch(Author)
Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure CVPR F PyTorch(Author)
On Implicit Filter Level Sparsity in Convolutional Neural Networks, Extension1, Extension2 CVPR F PyTorch(Author)
Structured Pruning of Neural Networks with Budget-Aware Regularization CVPR F -
Importance Estimation for Neural Network Pruning CVPR F PyTorch(Author)
OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks CVPR F -
Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search CVPR Other TensorFlow(Author)
Variational Convolutional Neural Network Pruning CVPR - -
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks ICLR (Best) W TensorFlow(Author)
Rethinking the Value of Network Pruning ICLR F PyTorch(Author)
Dynamic Channel Pruning: Feature Boosting and Suppression ICLR F TensorFlow(Author)
SNIP: Single-shot Network Pruning based on Connection Sensitivity ICLR W TensorFLow(Author)
Dynamic Sparse Graph for Efficient Deep Learning ICLR F CUDA(3rd)
Collaborative Channel Pruning for Deep Networks ICML F -
Approximated Oracle Filter Pruning for Destructive CNN Width Optimization github ICML F -
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis4 ICML W PyTorch(Author)
COP: Customized Deep Model Compression via Regularized Correlation-Based Filter-Level Pruning IJCAI F Tensorflow(Author)

2018

Title Venue Type Code
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers ICLR F TensorFlow(Author), PyTorch(3rd)
To prune, or not to prune: exploring the efficacy of pruning for model compression ICLR W -
Discrimination-aware Channel Pruning for Deep Neural Networks NeurIPS F TensorFlow(Author)
Frequency-Domain Dynamic Pruning for Convolutional Neural Networks NeurIPS W -
Learning Sparse Neural Networks via Sensitivity-Driven Regularization NeurIPS WF -
Amc: Automl for model compression and acceleration on mobile devices ECCV F TensorFlow(3rd)
Data-Driven Sparse Structure Selection for Deep Neural Networks ECCV F MXNet(Author)
Coreset-Based Neural Network Compression ECCV F PyTorch(Author)
Constraint-Aware Deep Neural Network Compression ECCV W SkimCaffe(Author)
A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers ECCV W Caffe(Author)
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning CVPR F PyTorch(Author)
NISP: Pruning Networks using Neuron Importance Score Propagation CVPR F -
CLIP-Q: Deep Network Compression Learning by In-Parallel Pruning-Quantization CVPR W -
“Learning-Compression” Algorithms for Neural Net Pruning CVPR W -
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks IJCAI F PyTorch(Author)
Accelerating Convolutional Networks via Global & Dynamic Filter Pruning IJCAI F -

2017

Title Venue Type Code
Pruning Filters for Efficient ConvNets ICLR F PyTorch(3rd)
Pruning Convolutional Neural Networks for Resource Efficient Inference ICLR F TensorFlow(3rd)
Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee NeurIPS W TensorFlow(Author)
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon NeurIPS W PyTorch(Author)
Runtime Neural Pruning NeurIPS F -
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning CVPR F -
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression ICCV F Caffe(Author), PyTorch(3rd)
Channel pruning for accelerating very deep neural networks ICCV F Caffe(Author)
Learning Efficient Convolutional Networks Through Network Slimming ICCV F PyTorch(Author)

2016

Title Venue Type Code
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding ICLR (Best) W Caffe(Author)
Dynamic Network Surgery for Efficient DNNs NeurIPS W Caffe(Author)

2015

Title Venue Type Code
Learning both Weights and Connections for Efficient Neural Networks NeurIPS W PyTorch(3rd)

Related Repo

Awesome-model-compression-and-acceleration

EfficientDNNs

Embedded-Neural-Network

awesome-AutoML-and-Lightweight-Models

Model-Compression-Papers

knowledge-distillation-papers

Network-Speed-and-Compression

Owner
Yang He
Ph.D. student at UTS
Yang He
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022