Post-Training Quantization for Vision transformers.

Related tags

Deep LearningPTQ4ViT
Overview

PTQ4ViT

Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on these activation values. And we use a Hessian guided metric to evaluate different scaling factors, which improves the accuracy of calibration with a small cost. The quantized vision transformers (ViT, DeiT, and Swin) achieve near-lossless prediction accuracy (less than 0.5% drop at 8-bit quantization) on the ImageNet classification task. Please read the paper for details.

Install

Requirement

  • python>=3.5
  • pytorch>=1.5
  • matplotlib
  • pandas
  • timm

Datasets

To run example testing, you should put your ImageNet2012 dataset in path /datasets/imagenet.

We use ViTImageNetLoaderGenerator in utils/datasets.py to initialize our DataLoader. If your Imagenet datasets are stored elsewhere, you'll need to manually pass its root as an argument when instantiating a ViTImageNetLoaderGenerator.

Usage

1. Run example quantization

To test on all models with BasePTQ/PTQ4ViT, run

python example/test_all.py

To run ablation testing, run

python example/test_ablation.py

You can run the testing scripts with multiple GPUs. For example, calling

python example/test_all.py --multigpu --n_gpu 6

will use 6 gpus to run the test.

2. Download quantized model checkpoints

(Coming soon)

Results

Results of BasePTQ

model original w8a8 w6a6
ViT-S/224/32 75.99 73.61 60.144
ViT-S/224 81.39 80.468 70.244
ViT-B/224 84.54 83.896 75.668
ViT-B/384 86.00 85.352 46.886
DeiT-S/224 79.80 77.654 72.268
DeiT-B/224 81.80 80.946 78.786
DeiT-B/384 83.11 82.33 68.442
Swin-T/224 81.39 80.962 78.456
Swin-S/224 83.23 82.758 81.742
Swin-B/224 85.27 84.792 83.354
Swin-B/384 86.44 86.168 85.226

Results of PTQ4ViT

model original w8a8 w6a6
ViT-S/224/32 75.99 75.582 71.908
ViT-S/224 81.39 81.002 78.63
ViT-B/224 84.54 84.25 81.65
ViT-B/384 86.00 85.828 83.348
DeiT-S/224 79.80 79.474 76.282
DeiT-B/224 81.80 81.482 80.25
DeiT-B/384 83.11 82.974 81.55
Swin-T/224 81.39 81.246 80.47
Swin-S/224 83.23 83.106 82.38
Swin-B/224 85.27 85.146 84.012
Swin-B/384 86.44 86.394 85.388

Results of Ablation

  • ViT-S/224 (original top-1 accuracy 81.39%)
Hessian Guided Softmax Twin GELU Twin W8A8 W6A6
80.47 70.24
80.93 77.20
81.11 78.57
80.84 76.93
79.25 74.07
81.00 78.63
  • ViT-B/224 (original top-1 accuracy 84.54%)
Hessian Guided Softmax Twin GELU Twin W8A8 W6A6
83.90 75.67
83.97 79.90
84.07 80.76
84.10 80.82
83.40 78.86
84.25 81.65
  • ViT-B/384 (original top-1 accuracy 86.00%)
Hessian Guided Softmax Twin GELU Twin W8A8 W6A6
85.35 46.89
85.42 79.99
85.67 82.01
85.60 82.21
84.35 80.86
85.89 83.19

Citation

@article{PTQ4ViT_cvpr2022,
    title={PTQ4ViT: Post-Training Quantization Framework for Vision Transformers},
    author={Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, Guangyu Sun},
    journal={arXiv preprint arXiv:2111.12293},
    year={2022},
}
Owner
Zhihang Yuan
Zhihang Yuan
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022