A meta plugin for processing timelapse data timepoint by timepoint in napari

Overview

napari-time-slicer

License PyPI Python Version tests codecov napari hub

A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t data step by step when the user goes through the timelapse. Currently, these plugins are using napari-time-slicer:

napari-time-slicer enables inter-plugin communication, e.g. allowing to combine the plugins listed above in one image processing workflow for segmenting a timelapse dataset:

If you want to convert a 3D dataset into as 2D + time dataset, use the menu Tools > Utilities > Convert 3D stack to 2D timelapse (time-slicer). It will turn the 3D dataset to a 4D datset where the Z-dimension (index 1) has only 1 element, which will in napari be displayed with a time-slider. Note: It is recommended to remove the original 3D dataset after this conversion.

Usage for plugin developers

Plugins which implement the napari_experimental_provide_function hook can make use the @time_slicer. At the moment, only functions which take napari.types.ImageData, napari.types.LabelsData and basic python types such as int and float are supported. If you annotate such a function with @time_slicer it will internally convert any 4D dataset to a 3D dataset according to the timepoint currently selected in napari. Furthermore, when the napari user changes the current timepoint or the input data of the function changes, a re-computation is invoked. Thus, it is recommended to only use the time_slicer for functions which can provide [almost] real-time performance. Another constraint is that these annotated functions have to have a viewer parameter. This is necessary to read the current timepoint from the viewer when invoking the re-computions.

Example

import napari
from napari_time_slicer import time_slicer

@time_slicer
def threshold_otsu(image:napari.types.ImageData, viewer: napari.Viewer = None) -> napari.types.LabelsData:
    # ...

You can see a full implementations of this concept in the napari plugins listed above.


This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

Installation

You can install napari-time-slicer via pip:

pip install napari-time-slicer

To install latest development version :

pip install git+https://github.com/haesleinhuepf/napari-time-slicer.git

Contributing

Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.

License

Distributed under the terms of the BSD-3 license, "napari-time-slicer" is free and open source software

Issues

If you encounter any problems, please file an issue along with a detailed description.

Comments
  • pyqt5 dependency

    pyqt5 dependency

    The dependency on pyqt5 which gets installed via pip can create trouble if napari has been installed via conda (see https://napari.org/plugins/best_practices.html#don-t-include-pyside2-or-pyqt5-in-your-plugin-s-dependencies). Is there any reason for this dependency? As this plugin is itself a dependency of other plugins like napari-segment-blobs-and-things-with-membranes this can create trouble down the chain.

    opened by guiwitz 7
  • PyQt5 version requirement breaks environment

    PyQt5 version requirement breaks environment

    Hi @haesleinhuepf ,

    I wanted to ask whether it is really strictly necessary to use the current PyQt5 requirement?

    pyqt5>=5.15.0
    

    It collides with current Spyder versions that only support PyQt up to 5.13:

    spyder 5.1.5 requires pyqtwebengine<5.13, which is not installed.
    spyder 5.1.5 requires pyqt5<5.13, but you have pyqt5 5.15.6 which is incompatible.
    

    Since the time slicer is used downstream in quite a few plugins of yours (e.g., segment-blobs-and-things-with-membranes, etc.) this is quite a restriction.

    opened by jo-mueller 5
  • Bug report: `KeyError: 'viewer'`

    Bug report: `KeyError: 'viewer'`

    Hi @haesleinhuepf ,

    I am getting an error in this notebook in the 5th cell on this command:

    surface = nppas.largest_label_to_surface(labels)
    

    where nppas is napari-process-points-and-surfaces. Labels is a regular label image as made with skimage.measure.label().

    Thanks for looking at it!

    opened by jo-mueller 2
  • Make dask arrays instead of computing slice for slice

    Make dask arrays instead of computing slice for slice

    Hey @haesleinhuepf! this is the first implementation of the time slicer wrapper using dask instead of computing the time slices based on the current time index. I could re-use some a little of the previous code but the wrappers start to differ from eachother pretty soon. At the moment I'm also unsure if this wrapper can replace the original time slicer function as a substitute so I kept both your old version and the dask version. An idea that I had which could be useful for saving the dask images is a function which processes each time slice and saves it as a separate image (If images are saved one by one it's really easy to load them as dask arrays!)

    opened by Cryaaa 1
  • Tests failing

    Tests failing

    source:

     if sys.platform.startswith('linux') and running_as_bundled_app():
      .tox/py37-linux/lib/python3.7/site-packages/napari/utils/misc.py:65: in running_as_bundled_app
          metadata = importlib_metadata.metadata(app_module)
      .tox/py37-linux/lib/python3.7/site-packages/importlib_metadata/__init__.py:1005: in metadata
      return Distribution.from_name(distribution_name).metadata
      .tox/py37-linux/lib/python3.7/site-packages/importlib_metadata/__init__.py:562: in from_name
      raiseValueError("A distribution name is required.")
      E   ValueError: A distribution name is required.
    

    See also:

    https://github.com/napari/napari/issues/4797

    opened by haesleinhuepf 0
  • Have 4D dask arrays as result of time-sliced functions

    Have 4D dask arrays as result of time-sliced functions

    This turns result of time-slicer annotated functions into 4D delayed dask arrays as proposed by @Cryaaa in #5

    This PR doesn't fully work yet in the interactive napari user-interface. After setting up a workflow and when going through time, it crashes sometimes with a KeyError while saving the duration of an operation. This is related to a computation finishing while the result has already be replaced. Basically multiple threads writing to the same result. It's this error: https://github.com/dask/dask/issues/896

    Reproduce:

    • Start napari
    • Open the Example dataset clEsperanto > CalibZapwfixed
    • Turn it into a 2D+t dataset using Tools > Utilities
    • Open the assistant
    • Setup a workflow, e.g. Denoise, Threshold, Label
    • Move the time-bar a couple of times until it crashes.

    I'm not sure yet how to solve this.

    opened by haesleinhuepf 8
  • Aggregate points and surfaces in 4D

    Aggregate points and surfaces in 4D

    Hi Robert @haesleinhuepf ,

    I am seeing some issues with using the timeslicer on 4D points/surface data in napari. For instance, using the label_to_surface() function from napari-process-points-and-surfaces throws an error:

    ValueError: Input volume should be a 3D numpy array.
    

    which comes from the marching_cubes function under the hood. Here is a small example script to reproduce the error:

    import napari
    import napari_process_points_and_surfaces as nppas
    # Make a blurry sphere
    s = 100
    data = np.zeros((s, s, s), dtype=float)
    x0 = 50
    radius = 15
    
    for x in range(s):
        for y in range(s):
            for z in range(s):
                if np.sqrt((x-x0)**2 + (y-x0)**2 + (z-x0)**2) < radius:
                    data[x, y, z] = 1.0
    
    viewer = make_napari_viewer()
    viewer.add_image(image)
    
    segmentation = image > filters.threshold_otsu(image)
    viewer.add_labels(segmentation)
    
    surf = nppas.label_to_surface(segmentation.astype(int))
    viewer.add_surface(surf)
    

    When introspecting the call to marching_cubes within the time_slicer function it is also evident that the image is somehow still a 4D image.

    opened by jo-mueller 4
Releases(0.4.9)
Owner
Robert Haase
Computational Microscopist, BioImage Analyst, Code Jockey
Robert Haase
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021
Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

FangWei 1 Jan 16, 2022
Pipetools enables function composition similar to using Unix pipes.

Pipetools Complete documentation pipetools enables function composition similar to using Unix pipes. It allows forward-composition and piping of arbit

186 Dec 29, 2022
Data processing with Pandas.

Processing-data-with-python This is a simple example showing how to use Pandas to create a dataframe and the processing data with python. The jupyter

1 Jan 23, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
Gathering data of likes on Tinder within the past 7 days

tinder_likes_data Gathering data of Likes Sent on Tinder within the past 7 days. Versions November 25th, 2021 - Functionality to get the name and age

Alex Carter 12 Jan 05, 2023
Pip install minimal-pandas-api-for-polars

Minimal Pandas API for Polars Install From PyPI: pip install minimal-pandas-api-for-polars Example Usage (see tests/test_minimal_pandas_api_for_polars

Austin Ray 6 Oct 16, 2022
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
Meltano: ELT for the DataOps era. Meltano is open source, self-hosted, CLI-first, debuggable, and extensible.

Meltano is open source, self-hosted, CLI-first, debuggable, and extensible. Pipelines are code, ready to be version c

Meltano 625 Jan 02, 2023
scikit-survival is a Python module for survival analysis built on top of scikit-learn.

scikit-survival scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizi

Sebastian Pölsterl 876 Jan 04, 2023
Bigdata Simulation Library Of Dream By Sandman Books

BIGDATA SIMULATION LIBRARY OF DREAM BY SANDMAN BOOKS ================= Solution Architecture Description In the realm of Dreaming, its ruler SANDMAN,

Maycon Cypriano 3 Jun 30, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
Data Science Environment Setup in single line

datascienv is package that helps your to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries

Ashish Patel 55 Dec 16, 2022
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
An Aspiring Drop-In Replacement for NumPy at Scale

Legate NumPy is a Legate library that aims to provide a distributed and accelerated drop-in replacement for the NumPy API on top of the Legion runtime. Using Legate NumPy you do things like run the f

Legate 502 Jan 03, 2023
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023