Evaluation of a Monocular Eye Tracking Set-Up

Overview

Evaluation of a Monocular Eye Tracking Set-Up

As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Chen et al..
For 9 calibration samples, the previous state-of-the-art performance can be improved by up to 5.44% (2.553 degrees compared to 2.7 degrees) and for 128 calibration samples, by 7% (2.418 degrees compared to 2.6 degrees). This is accomplished by (a) improving the extraction of eye features, (b) refining the fusion process of these features, (c) removing erroneous data from the MPIIFaceGaze dataset during training, and (d) optimizing the calibration method.

A software to collect own gaze data and the full gaze tracking pipeline is also available.

Results of the different models.

For the citaitions [1] - [10] please see below. "own model 1" represents the model described in the section below. "own model 2" uses the same model architecture as "own model 1" but is trained without the erroneous data, see MPIIFaceGaze section below. "own model 3" is the same as "own model 2" but with the calibrations points organized in a $\sqrt{k}\times\sqrt{k}$ grid instead of randomly on the screen.

Model

Since the feature extractors share the same weights for both eyes, it has been shown experimentally that the feature extraction process can be improved by flipping one of the eye images so that the noses of all eye images are on the same side. The main reason for this is that the images of the two eyes are more similar this way and the feature extractor can focus more on the relevant features, rather than the unimportant features, of either the left or the right eye.

The architectural improvement that has had the most impact is the improved feature fusion process of left and right eye features. Instead of simply combining the two features, they are combined using Squeeze-and-Excitation (SE) blocks. This introduces a control mechanism for the channel relationships of the extracted feature maps that the model can learn serially.

Start training by running python train.py --path_to_data=./data --validate_on_person=1 --test_on_person=0. For pretrained models, please see evaluation section.

Data

While examining and analyzing the most commonly used gaze prediction dataset, MPIIFaceGaze a subset of MPIIGaze, in detail. It was realized that some recorded data does not match the provided screen sizes. For participant 2, 7, and 10, 0.043%, 8.79%, and 0.39% of the gazes directed at the screen did not match the screen provided, respectively. The left figure below shows recorded points in the datasets that do not match the provided screen size. These false target gaze positions are also visible in the right figure below, where the gaze point that are not on the screen have a different yaw offset to the ground truth.

Results of the MPIIFaceGaze analysis

To the best of our knowledge, we are the first to address this problem of this widespread dataset, and we propose to remove all days with any errors for people 2, 7, and 10, resulting in a new dataset we call MPIIFaceGaze-. This would only reduce the dataset by about 3.2%. As shown in the first figure, see "own model 2", removing these erroneous data improves the model's overall performance.

For preprocessing MPIIFaceGaze, download the original dataset and then run python dataset/mpii_face_gaze_preprocessing.py --input_path=./MPIIFaceGaze --output_path=./data. Or download the preprocessed dataset.

To only generate the CSV files with all filenames which gaze is not on the screen, run python dataset/mpii_face_gaze_errors.py --input_path=./MPIIFaceGaze --output_path=./data. This can be run on MPIIGaze and MPIIFaceGaze, or the CSV files can be directly downloaded for MPIIGaze and MPIIFaceGaze.

Calibration

Nine calibration samples has become the norm for the comparison of different model architectures using MPIIFaceGaze. When the calibration points are organized in a $\sqrt{k}\times\sqrt{k}$ grid instead of randomly on the screen, or all in one position, the resulting person-specific calibration is more accurate. The three different ways to distribute the calibration point are compared in the figure below, also see "own model 3" in the first figure. Nine calibration samples aligned in a grid result in a lower angular error than 9 randomly positioned calibration samples.

To collect your own calibration data or dataset, please refer to gaze data collection.

Comparison of the position of the calibration samples.

Evaluation

For evaluation, the trained models are evaluated on the full MPIIFaceGaze, including the erroneous data, for a fair comparison to other approaches. Download the pretrained "own model 2" models and run python eval.py --path_to_checkpoints=./pretrained_models --path_to_data=./data to reproduce the results shown in the figure above and the table below. --grid_calibration_samples=True takes a long time to evaluate, for the ease of use the number of calibration runs is reduced to 500.

random calibration
k=9
random calibration
k=128
grid calibration
k=9
grid calibration
k=128

k=all
p00 1.780 1.676 1.760 1.674 1.668
p01 1.899 1.777 1.893 1.769 1.767
p02 1.910 1.790 1.875 1.787 1.780
p03 2.924 2.729 2.929 2.712 2.714
p04 2.355 2.239 2.346 2.229 2.229
p05 1.836 1.720 1.826 1.721 1.711
p06 2.569 2.464 2.596 2.460 2.455
p07 3.823 3.599 3.737 3.562 3.582
p08 3.778 3.508 3.637 3.501 3.484
p09 2.695 2.528 2.667 2.526 2.515
p10 3.241 3.126 3.199 3.105 3.118
p11 2.668 2.535 2.667 2.536 2.524
p12 2.204 1.877 2.131 1.882 1.848
p13 2.914 2.753 2.859 2.754 2.741
p14 2.161 2.010 2.172 2.052 1.998
mean 2.584 2.422 2.553 2.418 2.409

Bibliography

[1] Zhaokang Chen and Bertram E. Shi, “Appearance-based gaze estimation using dilated-convolutions”, Lecture Notes in Computer Science, vol. 11366, C. V. Jawahar, Hongdong Li, Greg Mori, and Konrad Schindler, Eds., pp. 309–324, 2018. DOI: 10.1007/978-3-030-20876-9_20. [Online]. Available: https://doi.org/10.1007/978-3-030-20876-9_20.
[2] ——, “Offset calibration for appearance-based gaze estimation via gaze decomposition”, in IEEE Winter Conference on Applications of Computer Vision, WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020, IEEE, 2020, pp. 259–268. DOI: 10.1109/WACV45572.2020.9093419. [Online]. Available: https://doi.org/10.1109/WACV45572.2020.9093419.
[3] Tobias Fischer, Hyung Jin Chang, and Yiannis Demiris, “RT-GENE: real-time eye gaze estimation in natural environments”, in Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part X, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, Eds., ser. Lecture Notes in Computer Science, vol. 11214, Springer, 2018, pp. 339–357. DOI: 10.1007/978-3-030-01249-6_21. [Online]. Available: https://doi.org/10.1007/978-3-030-01249-6_21.
[4] Erik Lindén, Jonas Sjöstrand, and Alexandre Proutière, “Learning to personalize in appearance-based gaze tracking”, pp. 1140–1148, 2019. DOI: 10.1109/ICCVW.2019.00145. [Online]. Available: https://doi.org/10.1109/ICCVW.2019.00145.
[5] Gang Liu, Yu Yu, Kenneth Alberto Funes Mora, and Jean-Marc Odobez, “A differential approach for gaze estimation with calibration”, in British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, September 3-6, 2018, BMVA Press, 2018, p. 235. [Online]. Available: http://bmvc2018.org/contents/papers/0792.pdf.
[6] Seonwook Park, Shalini De Mello, Pavlo Molchanov, Umar Iqbal, Otmar Hilliges, and Jan Kautz, “Few-shot adaptive gaze estimation”, pp. 9367–9376, 2019. DOI: 10.1109/ICCV.2019.00946. [Online]. Available: https://doi.org/10.1109/ICCV.2019.00946.
[7] Seonwook Park, Xucong Zhang, Andreas Bulling, and Otmar Hilliges, “Learning to find eye region landmarks for remote gaze estimation in unconstrained settings”, Bonita Sharif and Krzysztof Krejtz, Eds., 21:1–21:10, 2018. DOI: 10.1145/3204493.3204545. [Online]. Available: https://doi.org/10.1145/3204493.3204545.
[8] Yu Yu, Gang Liu, and Jean-Marc Odobez, “Improving few-shot user-specific gaze adaptation via gaze redirection synthesis”, pp. 11 937–11 946, 2019. DOI: 10.1109/CVPR.2019.01221. [Online]. Available: http://openaccess.thecvf.com/content_CVPR_2019/html/Yu_Improving_Few-Shot_User-Specific_Gaze_Adaptation_via_Gaze_Redirection_Synthesis_CVPR_2019_paper.html.
[9] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling, “It’s written all over your face: Full-face appearance-based gaze estimation”, pp. 2299–2308, 2017. DOI: 10.1109/CVPRW.2017.284. [Online]. Available: https://doi.org/10.1109/CVPRW.2017.284
[10] ——, “Mpiigaze: Real-world dataset and deep appearance-based gaze estimation”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 1, pp. 162–175, 2019. DOI: 10.1109/TPAMI.2017.2778103. [Online]. Available: https://doi.org/10.1109/TPAMI.2017.2778103. \

Owner
Pascal
Pascal
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Backtesting the "Cramer Effect" & Recommendations from Cramer Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which

Gábor Vecsei 12 Aug 30, 2022
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
a tool that compiles a csv of all h1 program stats

h1stats - h1 Program Stats Scraper This python3 script will call out to HackerOne's graphql API and scrape all currently active programs for informati

Evan 40 Oct 27, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022
Manage large and heterogeneous data spaces on the file system.

signac - simple data management The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, and reproduc

Glotzer Group 109 Dec 14, 2022
Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
Port of dplyr and other related R packages in python, using pipda.

Unlike other similar packages in python that just mimic the piping syntax, datar follows the API designs from the original packages as much as possible, and is tested thoroughly with the cases from t

179 Dec 21, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022