Pipetools enables function composition similar to using Unix pipes.

Overview

Pipetools

tests-badge coverage-badge pypi-badge

Complete documentation

pipetools enables function composition similar to using Unix pipes.

It allows forward-composition and piping of arbitrary functions - no need to decorate them or do anything extra.

It also packs a bunch of utils that make common operations more convenient and readable.

Source is on github.

Why?

Piping and function composition are some of the most natural operations there are for plenty of programming tasks. Yet Python doesn't have a built-in way of performing them. That forces you to either deep nesting of function calls or adding extra glue code.

Example

Say you want to create a list of python files in a given directory, ordered by filename length, as a string, each file on one line and also with line numbers:

>>> print(pyfiles_by_length('../pipetools'))
1. ds_builder.py
2. __init__.py
3. compat.py
4. utils.py
5. main.py

All the ingredients are already there, you just have to glue them together. You might write it like this:

def pyfiles_by_length(directory):
    all_files = os.listdir(directory)
    py_files = [f for f in all_files if f.endswith('.py')]
    sorted_files = sorted(py_files, key=len, reverse=True)
    numbered = enumerate(py_files, 1)
    rows = ("{0}. {1}".format(i, f) for i, f in numbered)
    return '\n'.join(rows)

Or perhaps like this:

def pyfiles_by_length(directory):
    return '\n'.join('{0}. {1}'.format(*x) for x in enumerate(reversed(sorted(
        [f for f in os.listdir(directory) if f.endswith('.py')], key=len)), 1))

Or, if you're a mad scientist, you would probably do it like this:

pyfiles_by_length = lambda d: (reduce('{0}\n{1}'.format,
    map(lambda x: '%d. %s' % x, enumerate(reversed(sorted(
        filter(lambda f: f.endswith('.py'), os.listdir(d)), key=len))))))

But there should be one -- and preferably only one -- obvious way to do it.

So which one is it? Well, to redeem the situation, pipetools give you yet another possibility!

pyfiles_by_length = (pipe
    | os.listdir
    | where(X.endswith('.py'))
    | sort_by(len).descending
    | (enumerate, X, 1)
    | foreach("{0}. {1}")
    | '\n'.join)

Why would I do that, you ask? Comparing to the native Python code, it's

  • Easier to read -- minimal extra clutter
  • Easier to understand -- one-way data flow from one step to the next, nothing else to keep track of
  • Easier to change -- want more processing? just add a step to the pipeline
  • Removes some bug opportunities -- did you spot the bug in the first example?

Of course it won't solve all your problems, but a great deal of code can be expressed as a pipeline, giving you the above benefits. Read on to see how it works!

Installation

$ pip install pipetools

Uh, what's that?

Usage

The pipe

The pipe object can be used to pipe functions together to form new functions, and it works like this:

from pipetools import pipe

f = pipe | a | b | c

# is the same as:
def f(x):
    return c(b(a(x)))

A real example, sum of odd numbers from 0 to x:

from functools import partial
from pipetools import pipe

odd_sum = pipe | range | partial(filter, lambda x: x % 2) | sum

odd_sum(10)  # -> 25

Note that the chain up to the sum is lazy.

Automatic partial application in the pipe

As partial application is often useful when piping things together, it is done automatically when the pipe encounters a tuple, so this produces the same result as the previous example:

odd_sum = pipe | range | (filter, lambda x: x % 2) | sum

As of 0.1.9, this is even more powerful, see X-partial.

Built-in tools

Pipetools contain a set of pipe-utils that solve some common tasks. For example there is a shortcut for the filter class from our example, called where():

from pipetools import pipe, where

odd_sum = pipe | range | where(lambda x: x % 2) | sum

Well that might be a bit more readable, but not really a huge improvement, but wait!

If a pipe-util is used as first or second item in the pipe (which happens quite often) the pipe at the beginning can be omitted:

odd_sum = range | where(lambda x: x % 2) | sum

See pipe-utils' documentation.

OK, but what about the ugly lambda?

where(), but also foreach(), sort_by() and other pipe-utils can be quite useful, but require a function as an argument, which can either be a named function -- which is OK if it does something complicated -- but often it's something simple, so it's appropriate to use a lambda. Except Python's lambdas are quite verbose for simple tasks and the code gets cluttered...

X object to the rescue!

from pipetools import where, X

odd_sum = range | where(X % 2) | sum

How 'bout that.

Read more about the X object and it's limitations.

Automatic string formatting

Since it doesn't make sense to compose functions with strings, when a pipe (or a pipe-util) encounters a string, it attempts to use it for (advanced) formatting:

>>> countdown = pipe | (range, 1) | reversed | foreach('{}...') | ' '.join | '{} boom'
>>> countdown(5)
'4... 3... 2... 1... boom'

Feeding the pipe

Sometimes it's useful to create a one-off pipe and immediately run some input through it. And since this is somewhat awkward (and not very readable, especially when the pipe spans multiple lines):

result = (pipe | foo | bar | boo)(some_input)

It can also be done using the > operator:

result = some_input > pipe | foo | bar | boo

Note

Note that the above method of input won't work if the input object defines __gt__ for any object - including the pipe. This can be the case for example with some objects from math libraries such as NumPy. If you experience strange results try falling back to the standard way of passing input into a pipe.

But wait, there is more

Checkout the Maybe pipe, partial application on steroids or automatic data structure creation in the full documentation.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dy

2 Nov 08, 2021
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
Multiple Pairwise Comparisons (Post Hoc) Tests in Python

scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal

Maksim Terpilowski 264 Dec 30, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
ETL pipeline on movie data using Python and postgreSQL

Movies-ETL ETL pipeline on movie data using Python and postgreSQL Overview This project consisted on a automated Extraction, Transformation and Load p

Juan Nicolas Serrano 0 Jul 07, 2021
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

aliaksandr-master 0 Jan 26, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets

HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets that can be described as multidimensional arrays o

HyperSpy 411 Dec 27, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022