HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

Overview

HAR-stacked-residual-bidir-LSTM

The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (HAR) using stacked residual bidirectional-LSTM cells (RNN) with TensorFlow.

It resembles to the architecture used in "Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation" without an attention mechanism and with just the encoder part. In fact, we started coding while thinking about applying residual connections to LSTMs - and it is only afterwards that we saw that such a deep LSTM architecture was already being used.

Here, we improve accuracy on the previously used dataset from 91% to 94% and we push the subject further by trying our architecture on another dataset.

Our neural network has been coded to be easy to adapt to new datasets (assuming it is given a fixed, non-dynamic, window of signal for every prediction) and to use different breadth, depth and length by using a new configuration file.

Here is a simplified overview of our architecture:

Simplified view of a "2x2" architecture. We obtain best results with a "3x3" architecture (details below figure).

Bear in mind that the time steps expands to the left for the whole sequence length and that this architecture example is what we call a "2x2" architecture: 2 residual cells as a block stacked 2 times for a total of 4 bidirectional cells, which is in reality 8 unidirectional LSTM cells. We obtain best results with a 3x3 architecture, consisting of 18 LSTM cells.

Neural network's architecture

Mainly, the number of stacked and residual layers can be parametrized easily as well as whether or not bidirectional LSTM cells are to be used. Input data needs to be windowed to an array with one more dimension: the training and testing is never done on full signal lengths and use shuffling with resets of the hidden cells' states.

We are using a deep neural network with stacked LSTM cells as well as residual (highway) LSTM cells for every stacked layer, a little bit like in ResNet, but for RNNs.

Our LSTM cells are also bidirectional in term of how they pass trough the time axis, but differ from classic bidirectional LSTMs by the fact we concatenate their output features rather than adding them in an element-wise fashion. A simple hidden ReLU layer then lowers the dimension of those concatenated features for sending them to the next stacked layer. Bidirectionality can be disabled easily.

Setup

We used TensorFlow 0.11 and Python 2. Sklearn is also used.

The two datasets can be loaded by running python download_datasets.py in the data/ folder.

To preprocess the second dataset (opportunity challenge dataset), the signal submodule of scipy is needed, as well as pandas.

Results using the previous public domain HAR dataset

This dataset named A Public Domain Dataset for Human Activity Recognition Using Smartphones is about classifying the type of movement amongst six categories: (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING).

The bests results for a test accuracy of 94% are achieved with the 3x3 bidirectional architecture with a learning rate of 0.001 and an L2 regularization multiplier (weight decay) of 0.005, as seen in the 3x3_result_HAR_6.txt file.

Training and testing can be launched by running the config: python config_dataset_HAR_6_classes.py.

Results from the Opportunity dataset

The neural network has also been tried on the Opportunity dataset to see if the architecture could be easily adapted to a similar task.

Don't miss out this nice video that offers a nice overview and understanding of the dataset.

We obtain a test F1-score of 0.893. Our results can be compared to the state of the art DeepConvLSTM that is used on the same dataset and achieving a test F1-score of 0.9157.

We only used a subset of the full dataset as done in other research in order to simulate the conditions of the competition, using 113 sensor channels and classifying on the 17 categories output (and with the NULL class for a total of 18 classes). The windowing of the series for feeding in our neural network is also the same 24 time steps per classification, on a 30 Hz signal. However, we observed that there was no significant difference between using 128 time steps or 24 time steps (0.891 vs 0.893 F1-score). Our LSTM cells' inner representation is always reset to 0 between series. We also used mean and standard deviation normalization rather than min to max rescaling to rescale features to a zero mean and a standard deviation of 0.5. More details about preprocessing are explained furthermore in their paper. Other details, such as the fact that the classification output is sampled only at the last timestep for the training of the neural network, can be found in their preprocessing script that we adapted in our repository.

The config file can be runned like this: config_dataset_opportunity_18_classes.py. For best results, it is possible to readjust the learning rate such as in the 3x3_result_opportunity_18.txt file.

Citation

The paper is available on arXiv: https://arxiv.org/abs/1708.08989

Here is the BibTeX citation code:

@article{DBLP:journals/corr/abs-1708-08989,
  author    = {Yu Zhao and
               Rennong Yang and
               Guillaume Chevalier and
               Maoguo Gong},
  title     = {Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable
               Sensors},
  journal   = {CoRR},
  volume    = {abs/1708.08989},
  year      = {2017},
  url       = {http://arxiv.org/abs/1708.08989},
  archivePrefix = {arXiv},
  eprint    = {1708.08989},
  timestamp = {Mon, 13 Aug 2018 16:46:48 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1708-08989},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Collaborate with us on similar research projects

Join the slack workspace for time series processing, where you can:

  • Collaborate with us and other researchers on writing more time series processing papers, in the #research channel;
  • Do business with us and other companies for services and products related to time series processing, in the #business channel;
  • Talk about how to do Clean Machine Learning using Neuraxle, in the #neuraxle channel;

Online Course: Learn Deep Learning and Recurrent Neural Networks (DL&RNN)

We have created a course on Deep Learning and Recurrent Neural Networks (DL&RNN). Request an access to the course here. That is the most richly dense and accelerated course out there on this precise topic of DL&RNN.

We've also created another course on how to do Clean Machine Learning with the right design patterns and the right software architecture for your code to evolve correctly to be useable in production environments.

Owner
Guillaume Chevalier
e^(πi) + 1 = 0
Guillaume Chevalier
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022