Generalized Decision Transformer for Offline Hindsight Information Matching

Overview

Generalized Decision Transformer for Offline Hindsight Information Matching

[arxiv]

If you use this codebase for your research, please cite the paper:

@article{furuta2021generalized,
  title={Generalized Decision Transformer for Offline Hindsight Information Matching},
  author={Hiroki Furuta and Yutaka Matsuo and Shixiang Shane Gu},
  journal={arXiv preprint arXiv:2111.10364},
  year={2021}
}

Installation

Experiments require MuJoCo. Follow the instructions in the mujoco-py repo to install. Then, dependencies can be installed with the following command:

conda env create -f conda_env.yml

Downloading datasets

Datasets are stored in the data directory. Install the D4RL repo, following the instructions there. Then, run the following script in order to download the datasets and save them in our format:

python download_d4rl_datasets.py

Run experiments

Run train_cdt.py to train Categorical DT:

python train_cdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --condition 'reward' --save_model True

python train_cdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --condition 'xvel' --save_model True

Run eval_cdt.py to eval CDT using saved weights:

python eval_cdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --condition 'reward' --save_rollout True
python eval_cdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --condition 'xvel' --save_rollout True

For Bi-directional DT, run train_bdt.py & eval_bdtf.py

python train_bdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --z_dim 16 --save_model True
python eval_bdt.py --env halfcheetah --dataset medium-expert --gpu 0 --seed 0 --dist_dim 30 --n_bins 31 --z_dim 16 --save_rollout True

Reference

This repository is developed on top of original Decision Transformer.

Owner
Hiroki Furuta
The University of Tokyo/Reinforcement Learning
Hiroki Furuta
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022