The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

Related tags

Deep LearningMOTIF
Overview

MOTIF Dataset

The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled with ground truth confidence. Family labels were obtained by surveying thousands of open-source threat reports published by 14 major cybersecurity organizations between Jan. 1st, 2016 Jan. 1st, 2021. The dataset also provides a comprehensive alias mapping for each family and EMBER raw features for each file.

Further information about the MOTIF dataset is provided in our paper.

If you use the provided data or code, please make sure to cite our paper:

@misc{joyce2021motif,
      title={MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels},
      author={Robert J. Joyce and Dev Amlani and Charles Nicholas and Edward Raff},
      year={2021},
      eprint={2111.15031},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Downloading the Dataset

Due to the size of the dataset, you must use Git LFS in order to clone the repository. Installation instructions for Git LFS are linked here. On Debian-based systems, the Git LFS package can be installed using:

sudo apt-get install git-lfs

Once Git LFS is installed, you can clone this repository using:

git lfs clone https://github.com/boozallen/MOTIF.git

Dataset Contents

The main dataset is located in dataset/ and contains the following files:

motif_dataset.jsonl

Each line of motif_dataset.jsonl is a .json object with the following entries:

Name Description
md5 MD5 hash of malware sample
sha1 SHA-1 hash of malware sample
sha256 SHA-256 hash of malware sample
reported_hash Hash of malware sample provided in report
reported_family Normalized family name provided in report
aliases List of known aliases for family
label Unique id for malware family (for ML purposes)
report_source Name of organization that published report
report_date Date report was published
report_url URL of report
report_ioc_url URL to report appendix (if any)
appeared Year and month malware sample was first seen

Each .json object also contains EMBER raw features (version 2) for the file:

Name Description
histogram EMBER histogram
byteentropy EMBER byte histogram
strings EMBER strings metadata
general EMBER general file metadata
header EMBER PE header metadata
section EMBER PE section metadata
imports EMBER imports metadata
exports EMBER exports metadata
datadirectories EMBER data directories metadata

motif_families.csv

This file contains an alias mapping for each of the 454 malware families in the MOTIF dataset. It also contains a succinct description of the family and the threat group or campaign that the family is attributed to (if any).

Column Description
Aliases List of known aliases for family
Description Brief sentence describing capabilities of malware family
Attribution (If any) Name of threat actor malware/campaign is attributed to

motif_reports.csv

This file provides information gathered from our original survey of open-source threat reports. We identified 4,369 malware hashes with 595 distinct reported family names during the survey, but we were unable to obtain some of the files and we restricted the MOTIF dataset to only files in the PE file format. The reported hash, family, source, date, URL, and IOC URL of any malware samples which did not make it into the final MOTIF dataset are located here.

MOTIF.7z

The disarmed malware samples are provided in this 1.47GB encrypted .7z file, which can be unzipped using the following password:

i_assume_all_risk_opening_malware

Each file is named in the format MOTIF_MD5, with MD5 indicating the file's hash prior to when it was disarmed.

X_train.dat and y_train.dat

EMBERv2 feature vectors and labels are provided in X_train.dat and y_train.dat, respectively. Feature vectors were computed using LIEF v0.9.0. These files are named for compatibility with the EMBER read_vectorized_features() function. MOTIF is not split into a training or test set, and X_train.dat and y_train.dat contain feature vectors and labels for the entire dataset.

Benchmark Models

We provide code for training the ML models described in our paper, located in benchmarks/. To support these models, code for modified versions of MalConv2 is included in the MalConv2/ directory.

Requirements:

Packages required for training the ML models can be installed using the following commands:

pip3 install -r requirements.txt
python3 setup.py install

Training the LightGBM or outlier detection models also requires EMBER:

pip3 install git+https://github.com/elastic/ember.git

Training the models:

The LightGBM model can be trained using the following command, where /path/to/MOTIF/dataset/ indicates the path to the dataset/ directory.

python3 lgbm.py /path/to/MOTIF/dataset/

The MalConv2 model can be trained using the following command, where /path/to/MOTIF/MOTIF_defanged/ indicates the path to the unzipped folder containing the disarmed malware samples:

python3 malconv.py /path/to/MOTIF/MOTIF_defanged/ /path/to/MOTIF/dataset/motif_dataset.jsonl

The three outlier detection models can be trained using the following command:

python3 outliers.py /path/to/MOTIF/dataset/

Proper Use of Data

Use of this dataset must follow the provided terms of licensing. We intend this dataset to be used for research purposes and have taken measures to prevent abuse by attackers. All files are prevented from running using the same technique as the SOREL dataset. We refer to their statement regarding safety and abuse of the data.

The malware we’re releasing is “disarmed” so that it will not execute. This means it would take knowledge, skill, and time to reconstitute the samples and get them to actually run. That said, we recognize that there is at least some possibility that a skilled attacker could learn techniques from these samples or use samples from the dataset to assemble attack tools to use as part of their malicious activities. However, in reality, there are already many other sources attackers could leverage to gain access to malware information and samples that are easier, faster and more cost effective to use. In other words, this disarmed sample set will have much more value to researchers looking to improve and develop their independent defenses than it will have to attackers.

Owner
Booz Allen Hamilton
The official GitHub organization of Booz Allen Hamilton
Booz Allen Hamilton
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023