Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

Overview

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed

Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

Automatic labeling of the intervertebral disc is a difficult task, due to the many challenges such as complex background, the similarity between discs and bone area in MRI imaging, blurry image, and variation in an imaging modality. Precisely localizing spinal discs plays an important role in intervertebral disc labeling. Most of the literature work consider the semantic intervertebral disc labeling as a post-processing step, which applies on the top of the disc localization algorithm. Hence, the semantic intervertebral labeling highly depends on the disc localization algorithm and mostly fails when the localization algorithm cannot detect discs or falsely detects a background area as a disc. In this work, we aimed to mitigate this problem by reformulating the semantic intervertebral disc labeling using the pose estimation technique. If this code helps with your research please consider citing the following papers:

R. Azad, Lucas Rouhier, and Julien Cohen-Adad "Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling", MICCAI Workshop, 2021, download link.

Please consider starring us, if you found it useful. Thanks

Updates

  • 11-8-2021: Source code is available.

Prerequisties and Run

This code has been implemented in python language using Pytorch libarary and tested in ubuntu, though should be compatible with related environment. The required libraries are included in the requiremetns.txt file. Please follow the bellow steps to train and evaluate the model.

1- Download the Spine Generic Public Database (Multi-Subject).
2- Run the create_dataset.py to gather the required data from the Spin Generic dataset.
4- Run prepare_trainset.py to creat the training and validation samples.
Notice: To avoid the above steps we have provided the processed data for all train, validation and test sets here (should be around 150 MB) you can simply download it and continue with the rest steps.
5- Run the main.py to train and evaluate the model. Use the following command with the related arguments to perform the required action:
A- Train and evaluate the model python src/main.py. You can use --att true to use the attention mechanisim.
B- Evaluate the model python src/main.py --evaluate true it will load the trained model and evalute it on the validation set.
C- You can run make_res_gif.py to creat a prediction video using the prediction images generated by main.py for the validation set.
D- You can change the number of stacked hourglass by --stacks argument. For more details check the arguments section in main.py.
6- Run the test.py to evaluate the model on the test set alongside with the metrics.

Quick Overview

Diagram of the proposed method

Visualzie the attention channel

To extract and show the attention channel for the related input sample, we registered the attention channel by the forward hook. Thus with the following command, you can visualize the input sample, estimated vertebral disc location, and the attention channel.
python src/main.py --evaluate true --attshow true .

Attention visualization

Sample of detection result on the test set

Below we illustrated a sample of vertebral disc detection on the test set.

Test sample

Model weights

You can download the learned weights for each modality in the following table.

Method Modality Learned weights
Proposed model without attention T1w download
Proposed model without attention T2w download
Proposed model with attention T1w download
Proposed model with attention T2w download
Owner
Reza Azad
Deep Learning and Computer Vision Researcher
Reza Azad
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023