An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Overview

Ultra_Fast_Lane_Detection_TensorRT

An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)
这是一个基于TensorRT加速UFLD的repo,包含PyThon ONNX Parser以及C++ TensorRT API版本, 还包括Torch2TRT版本, 对源码和论文感兴趣的请参见:https://github.com/cfzd/Ultra-Fast-Lane-Detection

一. PyThon ONNX Parser

1. How to run

1) pip install -r requirements.txt

2) TensorRT7.x wil be fine, and other version may got some errors

2) For PyTorch, you can also try another version like 1.6, 1.5 or 1.4

2. Build ONNX(将训练好的pth/pt模型转换为onnx)

1) static(生成静态onnx模型):
python3 torch2onnx.py onnx_dynamic_int8/configs/tusimple_4.py --test_model ./tusimple_18.pth 

2) dynamic(生成支持动态输入的onnx模型):
First: vim torch2onnx.py
second: change "fix" from "True" to "False"
python3 torch2onnx.py onnx_dynamic_int8/configs/tusimple_4.py --test_model ./tusimple_18.pth

3. Build trt engine(将onnx模型转换为TensorRT的推理引擎)

We support many different types of engine export, such as static fp32, fp16, dynamic fp32, fp16, and int8 quantization
我们支持多种不同类型engine的导出,例如:静态fp32、fp16,动态fp32、fp16,以及int8的量化

static(fp32, fp16): 对于静态模型的导出,终端输入:

fp32:
python3 build_engine.py --onnx_path model_static.onnx --mode fp32<br/>
fp16:
python3 build_engine.py --onnx_path model_static.onnx --mode fp16<br/>

dynamic(fp32, fp16): 对于动态模型的导出,终端输入:

fp32:
python3 build_engine.py --onnx_path model_dynamic.onnx --mode fp32 --dynamic
fp16:
python3 build_engine.py --onnx_path model_dynamic.onnx --mode fp16 --dynamic

int8 quantization 如果想使用int8量化,终端输入:

python3 build_engine.py --onnx_path model_static.onnx --mode int8 --int8_data_path data/testset1000
# (int8_data_Path represents the calibration dataset)
# (其中int8_data_path表示校正数据集)

4. evaluate(compare)

(If you want to compare the acceleration and accuracy of reasoning through TRT with using pytorch, you can run the script)
(如果您想要比较通过TRT推理后,相对于使用PyTorch的加速以及精确度情况,可以运行该脚本)

python3 evaluate.py --pth_path PATH_OF_PTH_MODEL --trt_path PATH_OF_TRT_MODEL

二. torch2trt

torch2trt is an easy tool to convert pytorch model to tensorrt, you can check model details here:
https://github.com/NVIDIA-AI-IOT/torch2trt
(torch2trt 是一个易于使用的PyTorch到TensorRT转换器)

How to run

1) git clone https://github.com/NVIDIA-AI-IOT/torch2trt

2) python setup.py install

2) PyTorch >= 1.6 (other versions may got some errors)

生成trt模型

python3 export_trt.py

torch2trt 预测demo (可视化)

python3 demo_torch2trt.py --trt_path PATH_OF_TRT_MODEL --data_path PATH_OF_YOUR_IMG

evaluated

python3 evaluate.py --pth_path PATH_OF_PTH_MODEL --trt_path PATH_OF_TRT_MODEL --data_path PATH_OF_YOUR_IMG --torch2trt

三. C++ TensorRT API

生成权重文件

python3 export_trtcy.py

trt模型生成

修改第十行为 #define USE_FP32,则为FP32模式, 修改第十行为 #define USE_FP16,则为FP16模式

mkdir build
cd build
cmake ..
make
./lane_det -transfer             //  'lane_det.engine'

Tensorrt预测

./lane_det -infer  ../imgs 

四. trtexec

test tensorrt_dynamic_model on terminal, for instance, for batch_size=BATCH_SIZE, just run:

trtexec  --explicitBatch --minShapes=1x3x288x800 --optShapes=1x3x288x800 --maxShapes=32x3x288x800 --shapes=BATCH_SIZEx3x288x800 --loadEngine=lane_fp32_dynamic.trt --noDataTransfers --dumpProfile --separateProfileRun
You might also like...
Gpt2-WebAPI - The objective of this API is to provide the 3 best possible responses to sentences that the user would input via http GET request as a parameter
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Simple and efficient RevNet-Library with DeepSpeed support
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Comments
  • bug in UFLD_C++/main.cpp

    bug in UFLD_C++/main.cpp

    in function softmax_mul() : exp() don't substruct channel's (100) largest value; int funcion argmax(): "int max" should change to "float max".

    opened by tangjianping54 0
  • 请问怎么用CULane数据集训练的权重来推理

    请问怎么用CULane数据集训练的权重来推理

    我使用UFLD_C++来进行推理,修改了export_trtcy.py中的model = parsingNet(pretrained=False, backbone='18', cls_dim=(101, 56, 4), use_aux=False).cuda(),改为model = parsingNet(pretrained=False, backbone='18', cls_dim=(201, 18, 4), use_aux=False).cuda(),并且把OUTPUT_C改成201,把OUTPUT_H改成18,把OUTPUT_W改为4. 然后运行./lane_det -transfer的时候抛出了下面的错误: ./lane_det -transfer Loading weights: ../lane_culane.trtcy Platform supports fp16 mode and use it !!! Building engine, please wait for a while... [08/29/2022-11:29:31] [E] [TRT] (Unnamed Layer* 73) [Constant]: constant weights has count 29638656 but 46333952 was expected [08/29/2022-11:29:31] [E] [TRT] Could not compute dimensions for (Unnamed Layer* 73) [Constant]_output, because the network is not valid. [08/29/2022-11:29:31] [E] [TRT] Network validation failed. Build engine successfully! lane_det: /home/juche/Desktop/lmf_workspace/Ultra_Fast_Lane_Detection_TensorRT/UFLD_C++/UFLD/UFLD_net.cpp:138: void UFLD_net::APIToModel(nvinfer1::IHostMemory**): Assertion `engine != nullptr' failed. Aborted (core dumped)

    请问我该怎么办?

    opened by limengfei3675 1
  • Unpickling issue with torch2trt

    Unpickling issue with torch2trt

    I converted the tusimple_18.pth weight from the original UFLD repo using torch2onnx.py and build_engine.py scripts to a trt file. Running evaluate.py shows Inference time with PyTorch = 141.777 ms and Inference time with TensorRT_static = 27.395 ms in fp16. However, running UFLD_torch2trt/demo_torch2trt.py returns this error: Traceback (most recent call last): File "UFLD_torch2trt/demo_torch2trt.py", line 96, in <module> demo_with_torch2trt(trt_path, data_path) File "UFLD_torch2trt/demo_torch2trt.py", line 31, in demo_with_torch2trt model_trt.load_state_dict(torch.load(trt_file_path)) File "/home/nam/.local/lib/python3.6/site-packages/torch/serialization.py", line 593, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "/home/nam/.local/lib/python3.6/site-packages/torch/serialization.py", line 762, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: unpickling stack underflow It appears the issue mostly comes from loading old torchvision models, I tried to delete torch caches but it didnt work. I tried for both static and dynamic model but the result is the same. :(

    opened by namKolorfuL 0
  • Issue with demo_trt.py

    Issue with demo_trt.py

    Hi, I downloaded tusimple_18.pth weight from the original UFLD repo and converted it to trt using your scipts in UFLD_Tiny. However, when doing inference with demo_trt.py, i got this error:

    [email protected]:~/Desktop/Ultra_Fast_Lane_Detection_TensorRT$ python3 UFLD_Tiny/demo_trt.py --model ./model_static_fp16 Loading TRT file from path ./model_static_fp16.trt... [array([-0.2890625 , -1. , -1.4892578 , ..., 2.9804688 , 0.18823242, 9.140625 ], dtype=float32)] Traceback (most recent call last): File "UFLD_Tiny/demo_trt.py", line 123, in <module> main() File "UFLD_Tiny/demo_trt.py", line 93, in main out_j = trt_outputs[0].reshape(97, 56, 4) # tiny版本不一样 ValueError: cannot reshape array of size 22624 into shape (97,56,4) The output looks like a 1-D array. Any idea how to solve this? My system: Jetson TX2, Jetpack 4.5.1, Ubuntu 18.04, CUDA 10.2, Tensorrt 7.1.3

    opened by namKolorfuL 0
Releases(TRT2021)
Owner
steven.yan
Algorithm engineer
steven.yan
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
Ongoing research training transformer language models at scale, including: BERT & GPT-2

What is this fork of Megatron-LM and Megatron-DeepSpeed This is a detached fork of https://github.com/microsoft/Megatron-DeepSpeed, which in itself is

BigScience Workshop 316 Jan 03, 2023
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022