This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Overview

Occupancy Flow

This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics.

You can find detailed usage instructions for training your own models and using pre-trained models below.

If you find our code or paper useful, please consider citing

@inproceedings{OccupancyFlow,
    title = {Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics},
    author = {Niemeyer, Michael and Mescheder, Lars and Oechsle, Michael and Geiger, Andreas},
    booktitle = {Proc. of the IEEE International Conf. on Computer Vision (ICCV)},
    year = {2019}
}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create and activate an anaconda environment called oflow using

conda env create -f environment.yaml
conda activate oflow

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

You can test our code on the provided input point cloud sequences in the demo/ folder. To this end, simple run

python generate.py configs/demo.yaml

This script should create a folder out/demo/ where the output is stored.

Dataset

Point-based Data

To train a new model from scratch, you have to download the full dataset. You can download the pre-processed data (~42 GB) using

bash scripts/download_data.sh

The script will download the point-based point-based data for the Dynamic FAUST (D-FAUST) dataset to the data/ folder.

Please note: We do not provide the renderings for the 4D reconstruction from image sequences experiment nor the meshes for the interpolation and generative tasks due to privacy regulations. We outline how you can download the mesh data in the following.

Mesh Data

Please follow the instructions on D-FAUST homepage to download the "female and male registrations" as well as "scripts to load / parse the data". Next, follow their instructions in the scripts/README.txt file to extract the obj-files of the sequences. Once completed, you should have a folder with the following structure:


your_dfaust_folder/
| 50002_chicken_wings/
    | 00000.obj
    | 00001.obj
    | ...
    | 000215.obj
| 50002_hips/
    | 00000.obj
    | ...
| ...
| 50027_shake_shoulders/
    | 00000.obj
    | ...


You can now run

bash scripts/migrate_dfaust.sh path/to/your_dfaust_folder

to copy the mesh data to the dataset folder. The argument has to be the folder to which you have extracted the mesh data (the your_dfaust_folder from the directory tree above).

Usage

When you have installed all dependencies and obtained the preprocessed data, you are ready to run our pre-trained models and train new models from scratch.

Generation

To start the normal mesh generation process using a trained model, use

python generate.py configs/CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

The easiest way is to use a pretrained model. You can do this by using one of the config files

configs/pointcloud/oflow_w_correspond_pretrained.yaml
configs/interpolation/oflow_pretrained.yaml
configs/generative/oflow_pretrained.yaml

Our script will automatically download the model checkpoints and run the generation. You can find the outputs in the out/ folder.

Please note that the config files *_pretrained.yaml are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

Generation - Generative Tasks

For model-specific latent space interpolations and motion transfers, you first have to run

python encode_latent_motion_space.py config/generative/CONFIG.yaml

Next, you can call

python generate_latent_space_interpolation.py config/generative/CONFIG.yaml

or

python generate_motion_transfer.py config/generative/CONFIG.yaml

Please note: Make sure that you use the appropriate model for the generation processes, e.g. the latent space interpolations and motion transfers can only be generated with a generative model (e.g. configs/generative/oflow_pretrained.yaml).

Evaluation

You can evaluate the generated output of a model on the test set using

python eval.py configs/CONFIG.yaml

The evaluation results will be saved to pickle and csv files.

Training

Finally, to train a new network from scratch, run

python train.py configs/CONFIG.yaml

You can monitor the training process on http://localhost:6006 using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs --port 6006

where you replace OUTPUT_DIR with the respective output directory. For available training options, please have a look at config/default.yaml.

Further Information

Implicit Representations

If you like the Occupancy Flow project, please check out our similar projects on inferring 3D shapes (Occupancy Networks) and texture (Texture Fields).

Neural Ordinary Differential Equations

If you enjoyed our approach using differential equations, checkout Ricky Chen et. al.'s awesome implementation of differentiable ODE solvers which we used in our project.

Dynamic FAUST Dataset

We applied our method to the cool Dynamic FAUST dataset which contains sequences of real humans performing various actions.

[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022