fcn by tensorflow

Related tags

Deep Learningtf-fcn
Overview

Update

An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository.

tensorflow-fcn

This is a one file Tensorflow implementation of Fully Convolutional Networks in Tensorflow. The code can easily be integrated in your semantic segmentation pipeline. The network can be applied directly or finetuned to perform semantic segmentation using tensorflow training code.

Deconvolution Layers are initialized as bilinear upsampling. Conv and FCN layer weights using VGG weights. Numpy load is used to read VGG weights. No Caffe or Caffe-Tensorflow is required to run this. The .npy file for [VGG16] to be downloaded before using this needwork. You can find the file here: ftp://mi.eng.cam.ac.uk/pub/mttt2/models/vgg16.npy

No Pascal VOC finetuning was applied to the weights. The model is meant to be finetuned on your own data. The model can be applied to an image directly (see test_fcn32_vgg.py) but the result will be rather coarse.

Requirements

In addition to tensorflow the following packages are required:

numpy scipy pillow matplotlib

Those packages can be installed by running pip install -r requirements.txt or pip install numpy scipy pillow matplotlib.

Tensorflow 1.0rc

This code requires Tensorflow Version >= 1.0rc to run. If you want to use older Version you can try using commit bf9400c6303826e1c25bf09a3b032e51cef57e3b. This Commit has been tested using the pip version of 0.12, 0.11 and 0.10.

Tensorflow 1.0 comes with a large number of breaking api changes. If you are currently running an older tensorflow version, I would suggest creating a new virtualenv and install 1.0rc using:

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp27-none-linux_x86_64.whl
pip install --upgrade $TF_BINARY_URL

Above commands will install the linux version with gpu support. For other versions follow the instructions here.

Usage

python test_fcn32_vgg.py to test the implementation.

Use this to build the VGG object for finetuning:

vgg = vgg16.Vgg16()
vgg.build(images, train=True, num_classes=num_classes, random_init_fc8=True)

The images is a tensor with shape [None, h, w, 3]. Where h and w can have arbitrary size.

Trick: the tensor can be a placeholder, a variable or even a constant.

Be aware, that num_classes influences the way score_fr (the original fc8 layer) is initialized. For finetuning I recommend using the option random_init_fc8=True.

Training

Example code for training can be found in the KittiSeg project repository.

Finetuning and training

For training build the graph using vgg.build(images, train=True, num_classes=num_classes) were images is q queue yielding image batches. Use a softmax_cross_entropy loss function on top of the output of vgg.up. An Implementation of the loss function can be found in loss.py.

To train the graph you need an input producer and a training script. Have a look at TensorVision to see how to build those.

I had success finetuning the network using Adam Optimizer with a learning rate of 1e-6.

Content

Currently the following Models are provided:

  • FCN32
  • FCN16
  • FCN8

Remark

The deconv layer of tensorflow allows to provide a shape. The crop layer of the original implementation is therefore not needed.

I have slightly altered the naming of the upscore layer.

Field of View

The receptive field (also known as or field of view) of the provided model is:

( ( ( ( ( 7 ) * 2 + 6 ) * 2 + 6 ) * 2 + 6 ) * 2 + 4 ) * 2 + 4 = 404

Predecessors

Weights were generated using Caffe to Tensorflow. The VGG implementation is based on tensorflow-vgg16 and numpy loading is based on tensorflow-vgg. You do not need any of the above cited code to run the model, not do you need caffe.

Install

Installing matplotlib from pip requires the following packages to be installed libpng-dev, libjpeg8-dev, libfreetype6-dev and pkg-config. On Debian, Linux Mint and Ubuntu Systems type:

sudo apt-get install libpng-dev libjpeg8-dev libfreetype6-dev pkg-config
pip install -r requirements.txt

TODO

  • Provide finetuned FCN weights.
  • Provide general training code
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023