[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Related tags

Deep LearningMVFNet
Overview

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

1

Overview

We release the code of the MVFNet (Multi-View Fusion Network). The core code to implement the Multi-View Fusion Module is codes/models/modules/MVF.py.

[Mar 24, 2021] We has released the code of MVFNet.

[Dec 20, 2020] MVFNet has been accepted by AAAI 2021.

Prerequisites

All dependencies can be installed using pip:

python -m pip install -r requirements.txt

Our experiments run on Python 3.7 and PyTorch 1.5. Other versions should work but are not tested.

Download Pretrained Models

  • Download ImageNet pre-trained models
cd pretrained
sh download_imgnet.sh
  • Download K400 pre-trained models

Please refer to Model Zoo.

Data Preparation

Please refer to DATASETS.md for data preparation.

Model Zoo

Architecture Dataset T x interval Top-1 Acc. Pre-trained model Train log Test log
MVFNet-ResNet50 Kinetics-400 4x16 74.2% Download link Log link Log link
MVFNet-ResNet50 Kinetics-400 8x8 76.0% Download link Miss Log link
MVFNet-ResNet50 Kinetics-400 16x4 77.0% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 4x16 76.0% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 8x8 77.4% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 16x4 78.4% Download link Log link Log link

Testing

  • For 3 crops, 10 clips, the processing of testing
# Dataset: Kinetics-400
# Architecture: R50_8x8 [email protected]=76.0%
bash scripts/dist_test_recognizer.sh configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py ckpt_path 8 --fcn_testing

Training

This implementation supports multi-gpu, DistributedDataParallel training, which is faster and simpler.

  • For example, to train MVFNet-ResNet50 on Kinetics400 with 8 gpus, you can run:
bash scripts/dist_train_recognizer.sh configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py 8

Acknowledgements

We especially thank the contributors of the mmaction codebase for providing helpful code.

License

This repository is released under the Apache-2.0. license as found in the LICENSE file.

Citation

If you think our work is useful, please feel free to cite our paper 😆 :

@inproceedings{wu2020MVFNet,
  author    = {Wu, Wenhao and He, Dongliang and Lin, Tianwei and Li, Fu and Gan, Chuang and Ding, Errui},
  title     = {MVFNet: Multi-View Fusion Network for Efficient Video Recognition},
  booktitle = {AAAI},
  year      = {2021}
}

Contact

For any question, please file an issue or contact

Wenhao Wu: [email protected]
You might also like...
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

AdaFocus (ICCV 2021)  Adaptive Focus for Efficient Video Recognition
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Official code for
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Implementation of
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Comments
  • Is this right for the test configuration?

    Is this right for the test configuration?

    Hi I noticed your great job for action recognition from AAAI 2021. And I am trying to get the test results as yours on Kinetics400. After I have processed all the test videos to get the frames, I found that there is no annotation processing for kinetics400 test set up, neither in your configuration file. Could you share the test annotation for Kinetics400 and explain why using validation for test? https://github.com/whwu95/MVFNet/blob/ed336228ad88821ffe407a4355017acb416e4670/configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py#L58 https://github.com/whwu95/MVFNet/blob/ed336228ad88821ffe407a4355017acb416e4670/configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py#L145

    ann_file_test = 'datalist/kinetics400/val_ffmpeg_fps30.txt'
    ...
    test=dict(
            type=dataset_type,
            ann_file=ann_file_test,
            data_root=data_root_val,
            pipeline=test_pipeline, 
            test_mode=True,
            modality='RGB',
            filename_tmpl='img_{:05}.jpg'    ))
    

    Thanks a lot!

    opened by DanLuoNEU 2
  • About online recognition

    About online recognition

    Thank you for your great work. My question is that the mvf module needs to use convolution among multi-view dimensions,especially contains T dimension. If we want to apply the model into online recognition, it is difficult to store too many history frames. So how to apply it to the online recognition?Thank you.

    opened by ohheysherry66 0
Owner
Wenhao Wu
Wenhao Wu
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023