MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

Related tags

Deep LearningMAVE
Overview

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories created from 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attribute extraction study.

More details can be found in paper: https://arxiv.org/abs/2112.08663

The dataset is in JSON Lines format, where each line is a json object with the following schema:

, "category": , "paragraphs": [ { "text": , "source": }, ... ], "attributes": [ { "key": , "evidences": [ { "value": , "pid": , "begin": , "end": }, ... ] }, ... ] }">
{
   "id": 
           
            ,
   "category": 
            
             ,
   "paragraphs": [
      {
         "text": 
             
              ,
         "source": 
              
               
      },
      ...
   ],
   "attributes": [
      {
         "key": 
               
                , "evidences": [ { "value": 
                
                 , "pid": 
                 
                  , "begin": 
                  
                   , "end": 
                   
                     }, ... ] }, ... ] } 
                   
                  
                 
                
               
              
             
            
           

The product id is exactly the ASIN number in the All_Amazon_Meta.json file in the Amazon Review Data (2018). In this repo, we don't store paragraphs, instead we only store the labels. To obtain the full version of the dataset contaning the paragraphs, we suggest to first request the Amazon Review Data (2018), then run our binary to clean its product metadata and join with the labels as described below.

A json object contains a product and multiple attributes. A concrete example is shown as follows

{
   "id":"B0002H0A3S",
   "category":"Guitar Strings",
   "paragraphs":[
      {
         "text":"D'Addario EJ26 Phosphor Bronze Acoustic Guitar Strings, Custom Light, 11-52",
         "source":"title"
      },
      {
         "text":".011-.052 Custom Light Gauge Acoustic Guitar Strings, Phosphor Bronze",
         "source":"description"
      },
      ...
   ],
   "attributes":[
      {
         "key":"Core Material",
         "evidences":[
            {
               "value":"Bronze Acoustic",
               "pid":0,
               "begin":24,
               "end":39
            },
            ...
         ]
      },
      {
         "key":"Winding Material",
         "evidences":[
            {
               "value":"Phosphor Bronze",
               "pid":0,
               "begin":15,
               "end":30
            },
            ...
         ]
      },
      {
         "key":"Gauge",
         "evidences":[
            {
               "value":"Light",
               "pid":0,
               "begin":63,
               "end":68
            },
            {
               "value":"Light Gauge",
               "pid":1,
               "begin":17,
               "end":28
            },
            ...
         ]
      }
   ]
}

In addition to positive examples, we also provide a set of negative examples, i.e. (product, attribute name) pairs without any evidence. The overall statistics of the positive and negative sets are as follows

Counts Positives Negatives
# products 2226509 1248009
# product-attribute pairs 2987151 1780428
# products with 1-2 attributes 2102927 1140561
# products with 3-5 attributes 121897 99896
# products with >=6 attributes 1685 7552
# unique categories 1257 1114
# unique attributes 705 693
# unique category-attribute pairs 2535 2305

Creating the full version of the dataset

In this repo, we only open source the labels of the MAVE dataset and the code to deterministically clean the original Amazon product metadata in the Amazon Review Data (2018), and join with the labels to generate the full version of the MAVE dataset. After this process, the attribute values, paragraph ids and begin/end span indices will be consistent with the cleaned product profiles.

Step 1

Gain access to the Amazon Review Data (2018) and download the All_Amazon_Meta.json file to the folder of this repo.

Step 2

Run script

./clean_amazon_product_metadata_main.sh

to clean the Amazon metadata and join with the positive and negative labels in the labels/ folder. The output full MAVE dataset will be stored in the reproduce/ folder.

The script runs the clean_amazon_product_metadata_main.py binary using an apache beam pipeline. The binary will run on a single CPU core, but distributed setup can be enabled by changing pipeline options. The binary contains all util functions used to clean the Amazon metadata and join with labels. The pipeline will finish within a few hours on a single Intel Xeon 3GHz CPU core.

Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021