PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Related tags

Deep LearningNED
Overview

Neural Emotion Director (NED) - Official Pytorch Implementation

Example video of facial emotion manipulation while retaining the original mouth motion, i.e. speech. We show examples of 3 basic emotions.



This repository contains the source code for our paper:

Neural Emotion Director: Speech-preserving semantic control of facial expressions in “in-the-wild” videos
Foivos Paraperas Papantoniou, Panagiotis P. Filntisis, Petros Maragos, Anastasios Roussos

Project site: https://foivospar.github.io/NED/

Abstract: In this paper, we introduce a novel deep learning method for photo-realistic manipulation of the emotional state of actors in ``in-the-wild'' videos. The proposed method is based on a parametric 3D face representation of the actor in the input scene that offers a reliable disentanglement of the facial identity from the head pose and facial expressions. It then uses a novel deep domain translation framework that alters the facial expressions in a consistent and plausible manner, taking into account their dynamics. Finally, the altered facial expressions are used to photo-realistically manipulate the facial region in the input scene based on an especially-designed neural face renderer. To the best of our knowledge, our method is the first to be capable of controlling the actor’s facial expressions by even using as a sole input the semantic labels of the manipulated emotions, while at the same time preserving the speech-related lip movements. We conduct extensive qualitative and quantitative evaluations and comparisons, which demonstrate the effectiveness of our approach and the especially promising results that we obtain. Our method opens a plethora of new possibilities for useful applications of neural rendering technologies, ranging from movie post-production and video games to photo-realistic affective avatars.

Getting Started

Clone the repo:

git clone https://github.com/foivospar/NED
cd NED

Requirements

Create a conda environment, using the provided environment.yml file.

conda env create -f environment.yml

Activate the environment.

conda activate NED

Files

  1. Follow the instructions in DECA (under the Prepare data section) to acquire the 3 files ('generic_model.pkl', 'deca_model.tar', 'FLAME_albedo_from_BFM.npz') and place them under "./DECA/data".
  2. Fill out the form to get access to the FSGAN's pretrained models. Then download 'lfw_figaro_unet_256_2_0_segmentation_v1.pth' (from the "v1" folder) and place it under "./preprocessing/segmentation".

Video preprocessing

To train or test the method on a specific subject, first create a folder for this subject and place the video(s) of this subject into a "videos" subfolder. To acquire the training/test videos used in our experiments, please contact us.

For example, for testing the method on Tarantino's clip, a structure similar to the following must be created:

Tarantino ----- videos ----- Tarantino_t.mp4

Under the above structure, there are 3 options for the video(s) placed in the "videos" subfolder:

  1. Use it as test footage for this actor and apply our method for manipulating his/her emotion.
  2. Use this footage to train a neural face renderer on the actor (e.g. use the training video one of our 6 Youtube actors, or a footage of similar duration for a new identity).
  3. Use it only as reference clip for transferring the expressive style of the actor to another subject.

To preprocess the video (face detection, segmentation, landmark detection, 3D reconstruction, alignment) run:

./preprocess.sh <celeb_path> <mode>
  • is the path to the folder used for this actor.
  • is one of {train, test, reference} for each of the above cases respectively.

After successfull execution, the following structure will be created:


   
     ----- videos -----video.mp4 (e.g. "Tarantino_t.mp4")
                   |        |
                   |        ---video.txt (e.g. "Tarantino_t.txt", stores the per-frame bounding boxes, created only if mode=test)
                   |
                   --- images (cropped and resized images)
                   |
                   --- full_frames (original frames of the video, created only if mode=test or mode=reference)
                   |
                   --- eye_landmarks (created only if mode=train or mode=test)
                   |
                   --- eye_landmarks_aligned (same as above, but aligned)
                   |
                   --- align_transforms (similarity transformation matrices, created only if mode=train or mode=test)
                   |
                   --- faces (segmented images of the face, created only if mode=train or mode=test)
                   |
                   --- faces_aligned (same as above, but aligned)
                   |
                   --- masks (binary face masks, created only if mode=train or mode=test)
                   |
                   --- masks_aligned (same as above, but aligned)
                   |
                   --- DECA (3D face model parameters)
                   |
                   --- nmfcs (NMFC images, created only if mode=train or mode=test)
                   |
                   --- nmfcs_aligned (same as above, but aligned)
                   |
                   --- shapes (detailed shape images, created only if mode=train or mode=test)
                   |
                   --- shapes_aligned (same as above, but aligned)

   

1.Manipulate the emotion on a test video

Download our pretrained manipulator from here and unzip the checkpoint. We currently provide only the test scripts for the manipulator.

Also, preprocess the test video for one of our target Youtube actors or use a new actor (requires training a new neural face renderer).

For our Youtube actors, we provide pretrained renderer models here. Download the .zip file for the desired actor and unzip it.

Then, assuming that preprocessing (in test mode) has been performed for the selected test video (see above), you can manipulate the expressions of the celebrity in this video by one of the following 2 ways:

1.Label-driven manipulation

Select one of the 7 basic emotions (happy, angry, surprised, neutral, fear, sad, disgusted) and run :

python manipulator/test.py --celeb <celeb_path> --checkpoints_dir ./manipulator_checkpoints --trg_emotions <emotions> --exp_name <exp_name>
  • is the path to the folder used for this actor's test footage (e.g. "./Tarantino").
  • is one or more of the 7 emotions. If one emotion is given, e.g. --trg_emotions happy, all the video will be converted to happy, whereas for 2 or more emotions, such as --trg_emotions happy angry the first half of the video will be happy, the second half angry and so on.
  • is the name of the sub-folder that will be created under the for storing the results.
2.Reference-driven manipulation

In this case, the reference video should first be preprocessed (see above) in reference mode. Then run:

python manipulator/test.py --celeb <celeb_path> --checkpoints_dir ./manipulator_checkpoints --ref_dirs <ref_dirs> --exp_name <exp_name>
  • is the path to the folder used for this actor's test footage (e.g. "./Tarantino").
  • is one or more reference videos. In particular, the path to the "DECA" sublfolder has to be given. As with labels, more than one paths can be given, in which case the video will be transformed sequentially according to those reference styles.
  • is the name of the sub-folder that will be created under the for storing the results.

Then, run:

./postprocess.sh <celeb_path> <exp_name> <checkpoints_dir>
  • is the path to the test folder used for this actor.
  • is the name you have given to the experiment in the previous step.
  • is the path to the pretrained renderer for this actor (e.g. "./checkpoints_tarantino" for Tarantino).

This step performs neural rendering, un-alignment and blending of the modified faces. Finally, you should see the full_frames sub-folder into / . This contains the full frames of the video with the altered emotion. To convert them to video, run:

python postprocessing/images2video.py --imgs_path <full_frames_path> --out_path <out_path> --audio <original_video_path>
  • is the path to the full frames (e.g. "./Tarantino/happy/full_frames").
  • is the path for saving the video (e.g. "./Tarantino_happy.mp4").
  • is the path to the original video (e.g. "./Tarantino/videos/tarantino_t.mp4"). This argment is optional and is used to add the original audio to the generated video.

2.Train a neural face renderer for a new celebrity

Download our pretrained meta-renderer ("checkpoints_meta-renderer.zip") from the link above and unzip the checkpoints.

Assuming that the training video of the new actor has been preprocessed (in train mode) as described above, you can then finetune our meta-renderer on this actor by running:

python renderer/train.py --celeb <celeb_path> --checkpoints_dir <checkpoints_dir> --load_pretrain <pretrain_checkpoints> --which_epoch 15
  • is the path to the train folder used for the new actor.
  • is the new path where the checkpoints will be saved.
  • is the path with the checkpoints of the pretrained meta-renderer (e.g. "./checkpoints_meta-renderer")

3.Preprocess a reference video

If you want to use a reference clip (e.g. from a movie) of another actor to transfer his/her speaking style to your test actor, simply preprocess the reference actor's clip as described above (mode=reference) and follow the instructions on Reference-driven manipulation.

Citation

If you find this work useful for your research, please cite our paper.

@article{paraperas2021neural,
         title={Neural Emotion Director: Speech-preserving semantic control of facial expressions in "in-the-wild" videos}, 
         author={Paraperas Papantoniou, Foivos and Filntisis, Panagiotis P. and Maragos, Petros and Roussos, Anastasios},
         journal={arXiv preprint arXiv:2112.00585},
         year={2021}
}

Acknowledgements

We would like to thank the following great repositories that our code borrows from:

This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023