Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Overview

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image

This repository contains the code for the following paper:

  • R. Hu, N. Ravi, A. Berg, D. Pathak, Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image. in ICCV, 2021. (PDF)
@inproceedings{hu2021worldsheet,
  title={Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image},
  author={Hu, Ronghang and Ravi, Nikhila and Berg, Alex and Pathak, Deepak},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Project Page: https://worldsheet.github.io/

Installation

Our Worldsheet implementation is based on MMF and PyTorch3D. This repository is adapted from the MMF repository (https://github.com/facebookresearch/mmf).

This code is designed to be run on GPU, CPU training/inference is not supported.

  1. Create a new conda environment:
conda create -n worldsheet python=3.8
conda activate worldsheet
  1. Download this repository or clone with Git, and then enter the root directory of the repository git clone https://github.com/facebookresearch/worldsheet.git && cd worldsheet

  2. Install the MMF dependencies: pip install -r requirements.txt

  3. Install PyTorch3D as follows (we used v0.2.5):

# Install using conda
conda install -c pytorch3d pytorch3d=0.2.5

# Or install from GitHub directly
git clone https://github.com/facebookresearch/pytorch3d.git && cd pytorch3d
git checkout v0.2.5
rm -rf build/ **/*.so
FORCE_CUDA=1 pip install -e .
cd ..

# or pip install from github 
pip install "git+https://github.com/facebookresearch/[email protected]"
  1. Extra dependencies
pip install scikit-image

Train and evaluate on the Matterport3D and Replica datasets

In this work, we use the same Matterport3D and Replica datasets as in SynSin, based on the Habitat environment. In our codebase and config files, these two datasets are referred to as synsin_habitat (synsin_mp3d and synsin_replica) (note that here the synsin_ prefix only refers to the datasets used in SynSin; the underlying model being trained and evaluated is our Worldsheet model, not SynSin).

Extract the image frames

In our project, we extract those training, validation, and test image frames and camera matrices using the SynSin codebase for direct comparisons with SynSin and other previous work.

Please install our modified SynSin codebase from synsin_for_data_and_eval branch of this repository to extract the Matterport3D and Replica image frames:

git clone https://github.com/facebookresearch/worldsheet.git -b synsin_for_data_and_eval synsin && cd synsin

and install habitat-sim and habitat-api as additional SynSin dependencies following the official SynSin installation instructions. For convenience, we provide the corresponding versions of habitat-sim and habitat-api for SynSin in habitat-sim-for-synsin and habitat-sim-for-synsin branches of this repository.

After installing the SynSin codebase from synsin_for_data_and_eval branch, set up Matterport3D and Replica datasets following the instructions in the SynSin codebase, and run the following to save the image frames to disk (you can change MP3D_SAVE_IMAGE_DIR to a location on your machine).

# this is where Matterport3D and Replica image frames will be extracted
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# clone the SynSin repo from `synsin_for_data_and_eval` branch
git clone https://github.com/facebookresearch/worldsheet.git -b synsin_for_data_and_eval ../synsin
cd ../synsin

# Matterport3D train
DEBUG="" python evaluation/dump_train_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/train \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 1000
# Matterport3D val
DEBUG="" python evaluation/dump_val_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/val \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200
# Matterport3D test
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/test \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200
# Replica test
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_replica/test \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200 \
     --dataset replica
# Matterport3D val with 20-degree angle change
DEBUG="" python evaluation/dump_val_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/val_jitter_angle20 \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10 --images_before_reset 200 \
     --render_ids 0 --jitter_quaternions_angle 20
# Matterport3D test with 20-degree angle change
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/test_jitter_angle20 \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10 --images_before_reset 200 \
     --render_ids 0 --jitter_quaternions_angle 20

cd ../worldsheet  # assuming `synsin` repo and `worldsheet` repo are under the same parent directory

Training

Run the following to perform training and evaluation. In our experiments, we use a single machine with 4 NVIDIA V100-32GB GPUs.

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# train the scene mesh prediction in Worldsheet
./run_mp3d_and_replica/train_mp3d.sh mp3d_nodepth_perceptual_l1laplacian

# train the inpainter with frozen scene mesh prediction
./run_mp3d_and_replica/train_mp3d.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh

Pretrained models

Instead of performing the training above, one can also directly download the pretrained models via

./run_mp3d_and_replica/download_pretrained_models.sh

and run the evaluation below.

Evaluation

The evaluation scripts below will print the performance (PSNR, SSIM, Perc-Sim) on different test data.

Evaluate on the default test sets with the same camera changes as the training data (Table 1):

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# Matterport3D, without inpainter (Table 1 line 6)
./run_mp3d_and_replica/eval_mp3d_test_iter.sh mp3d_nodepth_perceptual_l1laplacian 40000

# Matterport3D, full model (Table 1 line 7)
./run_mp3d_and_replica/eval_mp3d_test_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

# Replica, full model (Table 1 line 7)
./run_mp3d_and_replica/eval_replica_test_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Evaluate the full model on 2X camera changes (Table 2):

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# Matterport3D, without inpainter (Table 2 line 4)
./run_mp3d_and_replica/eval_mp3d_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian 40000

# Matterport3D, full model (Table 2 line 5)
./run_mp3d_and_replica/eval_mp3d_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

# Replica, full model (Table 2 line 5)
./run_mp3d_and_replica/eval_replica_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Visualization

One can visualize the model predictions using the script run_mp3d_and_replica/visualize_mp3d_val_iter.sh to visualize the Matterport3D validation set (and this script can be modified to visualize other splits). For example, run the following to visualize the predictions from the full model:

export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

./run_mp3d_and_replica/visualize_mp3d_val_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Then, you can inspect the predictions using the notebook run_mp3d_and_replica/visualize_predictions.ipynb.

Train and evaluate on the RealEstate10K dataset

In this work, we use the same RealEstate10K dataset as in SynSin.

Setting up the RealEstate10K dataset

Please set up the dataset following the instructions in SynSin. The scripts below assumes this dataset has been downloaded to /checkpoint/ronghanghu/neural_rendering_datasets/realestate10K/RealEstate10K/frames/. You can modify its path in mmf/configs/datasets/synsin_realestate10k/defaults.yaml.

Training

Run the following to perform the training and evaluation. In our experiments, we use a single machine with 4 NVIDIA V100-32GB GPUs.

# train 33x33 mesh
./run_realestate10k/train.sh realestate10k_dscale2_lowerL1_200

# initialize 65x65 mesh from trained 33x33 mesh
python ./run_realestate10k/init_65x65_from_33x33.py \
    --input ./save/synsin_realestate10k/realestate10k_dscale2_lowerL1_200/models/model_50000.ckpt \
    --output ./save/synsin_realestate10k/realestate10k_dscale2_stride4ft_lowerL1_200/init.ckpt

# train 65x65 mesh
./run_realestate10k/train.sh realestate10k_dscale2_stride4ft_lowerL1_200

Pretrained models

Instead of performing the training above, one can also directly download the pretrained models via

./run_realestate10k/download_pretrained_models.sh

and run the evaluation below.

Evaluation

Note: as mentioned in the paper, following the evaluation protocol of SynSin on RealEstate10K, the best metrics of two separate predictions based on each view were reported for single-view methods. We follow this evaluation protocol for consistency with SynSin on RealEstate10K in Table 3. We also report averaged metrics over all predictions in the supplemental.

The script below evaluates the performance on RealEstate10K with averaged metrics over all predictions, as reported in the supplemental Table C.1:

# Evaluate 33x33 mesh (Supplemental Table C.1 line 6)
./run_realestate10k/eval_test_iter.sh realestate10k_dscale2_lowerL1_200 50000

# Evaluate 65x65 mesh (Supplemental Table C.1 line 7)
./run_realestate10k/eval_test_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

To evaluate with the SynSin protocol using the best metrics of two separate predictions as in Table 3, one needs to first save the predicted novel views as PNG files, and then use the SynSin codebase for evaluation. Please install our modified SynSin codebase from synsin_for_data_and_eval branch of this repository following the Matterport3D and Replica instructions above. Then evaluate as follows:

# Save prediction PNGs for 33x33 mesh
./run_realestate10k/write_pred_pngs_test_iter.sh realestate10k_dscale2_lowerL1_200 50000

# Save prediction PNGs for 65x65 mesh
./run_realestate10k/write_pred_pngs_test_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

cd ../synsin  # assuming `synsin` repo and `worldsheet` repo under the same directory

# Evaluate 33x33 mesh (Table 3 line 9)
python evaluation/evaluate_realestate10k_all.py \
    --take_every_other \
    --folder ../worldsheet/save/prediction_synsin_realestate10k/realestate10k_dscale2_lowerL1_200/50000/realestate10k_test

# Evaluate 65x65 mesh (Table 3 line 10)
python evaluation/evaluate_realestate10k_all.py \
    --take_every_other \
    --folder ../worldsheet/save/prediction_synsin_realestate10k/realestate10k_dscale2_stride4ft_lowerL1_200/50000/realestate10k_test

(The --take_every_other flag above performs best-of-two-prediction evaluation; without this flag, it should give the average-over-all-prediction results as in Supplemental Table C.1.)

Visualization

One can visualize the model's predictions using the script run_realestate10k/eval_val_iter.sh for the RealEstate10K validation set (run_realestate10k/visualize_test_iter.sh for the test set). For example, run the following to visualize the predictions from the 65x65 mesh:

./run_realestate10k/visualize_val_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

Then, you can inspect the predictions using notebook run_realestate10k/visualize_predictions.ipynb.

We also provide a notebook for interactive predictions in run_realestate10k/make_interactive_videos.ipynb, where one can walk through the scene and generate a continuous video of the predicted novel views.

Wrapping sheets with external depth prediction

In Sec. 4.3 of the paper, we test the limits of wrapping a mesh sheet over a large variety of images. We provide a notebook for this analysis in external_depth/make_interactive_videos_with_midas_depth.ipynb, where one can interactively generate a continuous video of the predicted novel views.

The structure of Worldsheet codebase

Worldsheet is implemented as a MMF model. This codebase largely follows the structure of typical MMF models and datasets.

The Worldsheet model is defined under the MMF model name mesh_renderer in the following files:

  • model definition: mmf/models/mesh_renderer.py
  • mesh and rendering utilities, losses, and metrics: mmf/neural_rendering/
  • config base: mmf/configs/models/mesh_renderer/defaults.yaml

The experimental config files for the Matterport and Replica experiments are in the following files:

  • Habitat dataset definition: mmf/datasets/builders/synsin_habitat/
  • Habitat dataset config base: mmf/configs/datasets/synsin_habitat/defaults.yaml
  • experimental configs: projects/neural_rendering/configs/synsin_habitat/

The experimental config files for the RealEstate10K experiments are in the following files:

  • RealEstate10K dataset definition: mmf/datasets/builders/synsin_realestate10k/
  • RealEstate10K dataset config base: mmf/configs/datasets/synsin_realestate10k/defaults.yaml
  • experimental configs: projects/neural_rendering/configs/synsin_realestate10k/

Acknowledgements

This repository is modified from the MMF library from Facebook AI Research. A large part of the codebase has been modified from the pix2pixHD codebase. Our PSNR, SSIM, and Perc-Sim evaluation scripts are modified from the SynSin codebase and we also use SynSin for image frame extraction on Matterport3D and Replica. A part of our differentiable rendering implementation is built upon the Softmax Splatting codebase. All appropriate licenses are included in the files in which the code is used.

Licence

Worldsheet is released under the BSD License.

ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022