An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Related tags

Deep LearningRLNAS
Overview

Neural Architecture Search with Random Labels(RLNAS)

Introduction

This project provides an implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch. Experiments are evaluated on multiple datasets (NAS-Bench-201 and ImageNet) and multiple search spaces (DARTS-like and MobileNet-like). RLNAS achieves comparable or even better results compared with state-of-the-art NAS methods such as PC-DARTS, Single Path One-Shot, even though the counterparts utilize full ground truth labels for searching. We hope our finding could inspire new understandings on the essential of NAS.

Requirements

  • Pytorch 1.4
  • Python3.5+

Search results

1.Results in NAS-Benchmark-201 search space

nas_201_results

2.Results in DARTS searh space

darts_search_sapce_results

Architeture visualization

1) Architecture searched on CIFAR-10

  • RLDARTS = Genotype(
    normal=[
    ('sep_conv_5x5', 0), ('sep_conv_3x3', 1),
    ('dil_conv_3x3', 0), ('sep_conv_5x5', 2),
    ('sep_conv_3x3', 0), ('dil_conv_5x5', 3),
    ('dil_conv_5x5', 1), ('dil_conv_3x3', 2)],
    normal_concat=[2, 3, 4, 5],
    reduce=[
    ('sep_conv_5x5', 0), ('dil_conv_3x3', 1),
    ('sep_conv_3x3', 0), ('sep_conv_5x5', 2),
    ('dil_conv_3x3', 1), ('sep_conv_3x3', 3),
    ('max_pool_3x3', 1), ('sep_conv_5x5', 2,)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_cifar10

  • Reduction cell: architecture_searched_on_cifar10

2) Architecture searched on ImageNet-1k without FLOPs constrain

  • RLDARTS = Genotype( normal=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('sep_conv_3x3', 1), ('sep_conv_3x3', 2),
    ('sep_conv_3x3', 0), ('sep_conv_5x5', 1),
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1)],
    normal_concat=[2, 3, 4, 5],
    reduce=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('sep_conv_5x5', 0), ('sep_conv_3x3', 2),
    ('sep_conv_5x5', 0), ('sep_conv_5x5', 2),
    ('sep_conv_3x3', 2), ('sep_conv_3x3', 4)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_imagenet_no_flops_constrain

  • Reduction cell: architecture_searched_on_cifar10

3) Architecture searched on ImageNet-1k with 600M FLOPs constrain

  • RLDARTS = Genotype(
    normal=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('skip_connect', 1), ('sep_conv_3x3', 2),
    ('sep_conv_3x3', 1), ('sep_conv_3x3', 2),
    ('skip_connect', 0), ('sep_conv_3x3', 4)],
    normal_concat=[2, 3, 4, 5],
    reduce=[ ('sep_conv_3x3', 0), ('max_pool_3x3', 1),
    ('sep_conv_3x3', 0), ('skip_connect', 1),
    ('sep_conv_3x3', 0), ('dil_conv_3x3', 1),
    ('skip_connect', 0), ('sep_conv_3x3', 1)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_imagenet_no_flops_constrain

  • Reduction cell: architecture_searched_on_cifar10

3.Results in MobileNet search space

The MobileNet-like search space proposed in ProxylessNAS is adopted in this paper. The SuperNet contains 21 choice blocks and each block has 7 alternatives:6 MobileNet blocks (combination of kernel size {3,5,7} and expand ratio {3,6}) and ’skip-connect’.

mobilenet_search_sapce_results

Architeture visualization

mobilenet_search_sapce_results

Usage

  • RLNAS in NAS-Benchmark-201

1)enter the work directory

cd nas_bench_201

2)train supernet with random labels

bash ./scripts-search/algos/train_supernet.sh cifar10 0 1

3)evolution search with angle

bash ./scripts-search/algos/evolution_search_with_angle.sh cifar10 0 1

4)calculate correlation

bash ./scripts-search/algos/cal_correlation.sh cifar10 0 1
  • RLNAS in DARTS search space

1)enter the work directory

cd darts_search_space

search architecture on CIFAR-10

cd cifar10/rlnas/

or search architecture on ImageNet

cd imagenet/rlnas/

2)train supernet with random labels

cd train_supernet
bash run_train.sh

3)evolution search with angle

cd evolution_search
cp ../train_supernet/models/checkpoint_epoch_50.pth.tar ./model_and_data/
cp ../train_supernet/models/checkpoint_epoch_0.pth.tar ./model_and_data/
bash run_server.sh
bash run_test.sh

4)architeture evaluation

cd retrain_architetcure

add searched architecture to genotypes.py

bash run_retrain.sh
  • RLNAS in MobileNet search space

The conduct commands are almost the same steps like RLNAS in DARTS search space, excepth that you need run 'bash run_generate_flops_lookup_table.sh' before evolution search.

Note: setup a server for the distributed search

tmux new -s mq_server
sudo apt update
sudo apt install rabbitmq-server
sudo service rabbitmq-server start
sudo rabbitmqctl add_user test test
sudo rabbitmqctl set_permissions -p / test '.*' '.*' '.*'

Before search, please modify host and username in the config file evolution_search/config.py.

Citation

If you find that this project helps your research, please consider citing some of the following papers:

@article{zhang2021neural,
  title={Neural Architecture Search with Random Labels},
  author={Zhang, Xuanyang and Hou, Pengfei and Zhang, Xiangyu and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}
@inproceedings{hu2020angle,
  title={Angle-based search space shrinking for neural architecture search},
  author={Hu, Yiming and Liang, Yuding and Guo, Zichao and Wan, Ruosi and Zhang, Xiangyu and Wei, Yichen and Gu, Qingyi and Sun, Jian},
  booktitle={European Conference on Computer Vision},
  pages={119--134},
  year={2020},
  organization={Springer}
}
@inproceedings{guo2020single,
  title={Single path one-shot neural architecture search with uniform sampling},
  author={Guo, Zichao and Zhang, Xiangyu and Mu, Haoyuan and Heng, Wen and Liu, Zechun and Wei, Yichen and Sun, Jian},
  booktitle={European Conference on Computer Vision},
  pages={544--560},
  year={2020},
  organization={Springer}
}
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022