This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Overview

Doctoral dissertation of Zheng Zhao

thesis

Dissertation latex compile

This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems. As an example, one can think of a family of DGPs as solutions to stochastic differential equations (SDEs), and view their regression problems as filtering and smoothing problems. Additionally, this thesis also presents a few applications from (D)GPs, such as system identification of SDEs and spectro-temporal signal analysis.

Supervisor: Prof. Simo Särkkä.

Pre-examiners: Prof. Kody J. H. Law from The University of Manchester and Prof. David Duvenaud from University of Toronto.

Opponent: Prof. Manfred Opper from University of Birmingham.

The public defence of the thesis will be streamed online on December 10, 2021 at noon (Helsinki time) via Zoom link https://aalto.zoom.us/j/67529212279. It is free and open to everyone.

More details regarding the thesis itself can be found in its title pages.

Contents

The dissertation is in ./dissertation.pdf. Feel free to download and read~~

Note that you may also find an "official" version in aaltodoc published by Aalto University. However, it destroyed the PDF links and outline, making it very painful to read in computer/ipad/inktablet. I believe that you will feel more enjoyable reading ./dissertation.pdf instead. In terms of content, the one here has no difference with the one in aaltodoc.

  1. ./dissertation.pdf. The PDF of the thesis.
  2. ./errata.md. Errata of the thesis.
  3. ./cover. This folder contains a Python script that generates the cover image.
  4. ./lectio_praecursoria. This folder contains the presentation at the public defence of the thesis.
  5. ./scripts. This folder contains Python scripts that are used to generate some of the figures in the thesis.
  6. ./thesis_latex. This folder contains the LaTeX source of the thesis. Compiling the tex files here will generate a PDF the same as with ./dissertation.pdf.

Satellite repositories

  1. https://github.com/zgbkdlm/ssdgp contains implementation of state-space deep Gaussian processes.
  2. https://github.com/zgbkdlm/tme and https://github.com/zgbkdlm/tmefs contain implementation of Taylor moment expansion method and its filter and smoother applications.

Citation

Bibtex:

@phdthesis{Zhao2021Thesis,
	title = {State-space deep Gaussian processes with applications},
	author = {Zheng Zhao},
	school = {Aalto University},
	year = {2021},
}

Plain text: Zheng Zhao. State-space deep Gaussian processes with applications. PhD thesis, Aalto University, 2021.

License

Unless otherwise stated, all rights belong to the author Zheng Zhao. This repository consists of files covered by different licenses, please check their licenses before you use them.

You are free to download, display, and print ./dissertation.pdf for your own personal use. Commercial use of it is prohibited.

Acknowledgement

I would like to thank Adrien (Monte) Corenflos, Christos Merkatas, Dennis Yeung, and Sakira Hassan for their time and efforts for reviewing and checking the languange of the thesis.

Contact

Zheng Zhao, [email protected]

Owner
Zheng Zhao
喵~~
Zheng Zhao
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022