Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Overview

Introduction

Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models".

In this work, we demonstrate that existing self-supervised speech model such as HuBERT, wav2vec 2.0, CPC and TERA are vulnerable to membership inference attack (MIA) and thus could reveal sensitive informations related to the training data.

Requirements

  1. Python >= 3.6
  2. Install sox on your OS
  3. Install s3prl on your OS
git clone https://github.com/s3prl/s3prl
cd s3prl
pip install -e ./
  1. Install the specific fairseq
pip install [email protected]+https://github.com//pytorch/[email protected]#egg=fairseq

Preprocessing

First, extract the self-supervised feature of utterances in each corpus according to your needs.

Currently, only LibriSpeech is available.

BASE_PATH=/path/of/the/corpus
OUTPUT_PATH=/path/to/save/feature
MODEL=wav2vec2
SPLIT=train-clean-100 # you should extract train-clean-100, dev-clean, dev-other, test-clean, test-other

python preprocess_feature_LibriSpeech.py \
    --base_path $BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --split $SPLIT

Speaker-level MIA

After extracting the features, you can apply the attack against the models using either basic attack and improved attack.

Noted that you should run the basic attack to generate the .csv file with similarity scores before performing improved attack.

Basic Attack

SEEN_BASE_PATH=/path/you/save/feature/of/seen/corpus
UNSEEN_BASE_PATH=/path/you/save/feature/of/unseen/corpus
OUTPUT_PATH=/path/to/output/results
MODEL=wav2vec2

python predefined-speaker-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \

Improved Attack

python train-speaker-level-similarity-model.py \
    --seen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --speaker_list "${OUTPUT_PATH}/${MODEL}-customized-speaker-level-attack-similarity.csv"

python customized-speaker-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --similarity_model_path "${OUTPUT_PATH}/customized-speaker-similarity-model-${MODEL}.pt"

Utterance-level MIA

The process for utterance-level MIA is similar to that of speaker-level:

Basic Attack

SEEN_BASE_PATH=/path/you/save/feature/of/seen/corpus
UNSEEN_BASE_PATH=/path/you/save/feature/of/unseen/corpus
OUTPUT_PATH=/path/to/output/results
MODEL=wav2vec2

python predefined-utterance-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \

Improved Attack

python train-utterance-level-similarity-model.py \
    --seen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --speaker_list "${OUTPUT_PATH}/${MODEL}-customized-utterance-level-attack-similarity.csv"

python customized-utterance-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --similarity_model_path "${OUTPUT_PATH}/customized-utterance-similarity-model-${MODEL}.pt"

Citation

If you find our work useful, please cite:

Owner
Wei-Cheng Tseng
Wei-Cheng Tseng
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022