Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Overview

Exploring Image Deblurring via Encoded Blur Kernel Space

About the project

We introduce a method to encode the blur operators of an arbitrary dataset of sharp-blur image pairs into a blur kernel space. Assuming the encoded kernel space is close enough to in-the-wild blur operators, we propose an alternating optimization algorithm for blind image deblurring. It approximates an unseen blur operator by a kernel in the encoded space and searches for the corresponding sharp image. Due to the method's design, the encoded kernel space is fully differentiable, thus can be easily adopted in deep neural network models.

Blur kernel space

Detail of the method and experimental results can be found in our following paper:

@inproceedings{m_Tran-etal-CVPR21, 
  author = {Phong Tran and Anh Tran and Quynh Phung and Minh Hoai}, 
  title = {Explore Image Deblurring via Encoded Blur Kernel Space}, 
  year = {2021}, 
  booktitle = {Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)} 
}

Please CITE our paper whenever this repository is used to help produce published results or incorporated into other software.

Open In Colab

Table of Content

Getting started

Prerequisites

  • Python >= 3.7
  • Pytorch >= 1.4.0
  • CUDA >= 10.0

Installation

git clone https://github.com/VinAIResearch/blur-kernel-space-exploring.git
cd blur-kernel-space-exploring


conda create -n BlurKernelSpace -y python=3.7
conda activate BlurKernelSpace
conda install --file requirements.txt

Training and evaluation

Preparing datasets

You can download the datasets in the model zoo section.

To use your customized dataset, your dataset must be organized as follow:

root
├── blur_imgs
    ├── 000
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
    ├── 001
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
├── sharp_imgs
    ├── 000
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
    ├── 001
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...

where root, blur_imgs, and sharp_imgs folders can have arbitrary names. For example, let root, blur_imgs, sharp_imgs be REDS, train_blur, train_sharp respectively (That is, you are using the REDS training set), then use the following scripts to create the lmdb dataset:

python create_lmdb.py --H 720 --W 1280 --C 3 --img_folder REDS/train_sharp --name train_sharp_wval --save_path ../datasets/REDS/train_sharp_wval.lmdb
python create_lmdb.py --H 720 --W 1280 --C 3 --img_folder REDS/train_blur --name train_blur_wval --save_path ../datasets/REDS/train_blur_wval.lmdb

where (H, C, W) is the shape of the images (note that all images in the dataset must have the same shape), img_folder is the folder that contains the images, name is the name of the dataset, and save_path is the save destination (save_path must end with .lmdb).

When the script is finished, two folders train_sharp_wval.lmdb and train_blur_wval.lmdb will be created in ./REDS.

Training

To do image deblurring, data augmentation, and blur generation, you first need to train the blur encoding network (The F function in the paper). This is the only network that you need to train. After creating the dataset, change the value of dataroot_HQ and dataroot_LQ in options/kernel_encoding/REDS/woVAE.yml to the paths of the sharp and blur lmdb datasets that were created before, then use the following script to train the model:

python train.py -opt options/kernel_encoding/REDS/woVAE.yml

where opt is the path to yaml file that contains training configurations. You can find some default configurations in the options folder. Checkpoints, training states, and logs will be saved in experiments/modelName. You can change the configurations (learning rate, hyper-parameters, network structure, etc) in the yaml file.

Testing

Data augmentation

To augment a given dataset, first, create an lmdb dataset using scripts/create_lmdb.py as before. Then use the following script:

python data_augmentation.py --target_H=720 --target_W=1280 \
			    --source_H=720 --source_W=1280\
			    --augmented_H=256 --augmented_W=256\
                            --source_LQ_root=datasets/REDS/train_blur_wval.lmdb \
                            --source_HQ_root=datasets/REDS/train_sharp_wval.lmdb \
			    --target_HQ_root=datasets/REDS/test_sharp_wval.lmdb \
                            --save_path=results/GOPRO_augmented \
                            --num_images=10 \
                            --yml_path=options/data_augmentation/default.yml

(target_H, target_W), (source_H, source_W), and (augmented_H, augmented_W) are the desired shapes of the target images, source images, and augmented images respectively. source_LQ_root, source_HQ_root, and target_HQ_root are the paths of the lmdb datasets for the reference blur-sharp pairs and the input sharp images that were created before. num_images is the size of the augmented dataset. model_path is the path of the trained model. yml_path is the path to the model configuration file. Results will be saved in save_path.

Data augmentation examples

Generate novel blur kernels

To generate a blur image given a sharp image, use the following command:

python generate_blur.py --yml_path=options/generate_blur/default.yml \
		        --image_path=imgs/sharp_imgs/mushishi.png \
			--num_samples=10
			--save_path=./res.png

where model_path is the path of the pre-trained model, yml_path is the path of the configuration file. image_path is the path of the sharp image. After running the script, a blur image corresponding to the sharp image will be saved in save_path. Here is some expected output: kernel generating examples Note: This only works with models that were trained with --VAE flag. The size of input images must be divisible by 128.

Generic Deblurring

To deblur a blurry image, use the following command:

python generic_deblur.py --image_path imgs/blur_imgs/blur1.png --yml_path options/generic_deblur/default.yml --save_path ./res.png

where image_path is the path of the blurry image. yml_path is the path of the configuration file. The deblurred image will be saved to save_path.

Image deblurring examples

Deblurring using sharp image prior

First, you need to download the pre-trained styleGAN or styleGAN2 networks. If you want to use styleGAN, download the mapping and synthesis networks, then rename and copy them to experiments/pretrained/stylegan_mapping.pt and experiments/pretrained/stylegan_synthesis.pt respectively. If you want to use styleGAN2 instead, download the pretrained model, then rename and copy it to experiments/pretrained/stylegan2.pt.

To deblur a blurry image using styleGAN latent space as the sharp image prior, you can use one of the following commands:

python domain_specific_deblur.py --input_dir imgs/blur_faces \
		    --output_dir experiments/domain_specific_deblur/results \
		    --yml_path options/domain_specific_deblur/stylegan.yml  # Use latent space of stylegan
python domain_specific_deblur.py --input_dir imgs/blur_faces \
		    --output_dir experiments/domain_specific_deblur/results \
		    --yml_path options/domain_specific_deblur/stylegan2.yml  # Use latent space of stylegan2

Results will be saved in experiments/domain_specific_deblur/results. Note: Generally, the code still works with images that have the size divisible by 128. However, since our blur kernels are not uniform, the size of the kernel increases as the size of the image increases.

PULSE-like Deblurring examples

Model Zoo

Pretrained models and corresponding datasets are provided in the below table. After downloading the datasets and models, follow the instructions in the testing section to do data augmentation, generating blur images, or image deblurring.

Model name dataset(s) status
REDS woVAE REDS ✔️
GOPRO woVAE GOPRO ✔️
GOPRO wVAE GOPRO ✔️
GOPRO + REDS woVAE GOPRO, REDS ✔️

Notes and references

The training code is borrowed from the EDVR project: https://github.com/xinntao/EDVR

The backbone code is borrowed from the DeblurGAN project: https://github.com/KupynOrest/DeblurGAN

The styleGAN code is borrowed from the PULSE project: https://github.com/adamian98/pulse

The stylegan2 code is borrowed from https://github.com/rosinality/stylegan2-pytorch

Owner
VinAI Research
VinAI Research
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022