Minimal PyTorch implementation of YOLOv3

Overview

PyTorch-YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Ubuntu CI PyPI pyversions PyPI license

Installation

Installing from source

For normal training and evaluation we recommend installing the package from source using a poetry virtual enviroment.

git clone https://github.com/eriklindernoren/PyTorch-YOLOv3
cd PyTorch-YOLOv3/
pip3 install poetry --user
poetry install

You need to join the virtual enviroment by runing poetry shell in this directory before running any of the following commands without the poetry run prefix. Also have a look at the other installing method, if you want to use the commands everywhere without opening a poetry-shell.

Download pretrained weights

./weights/download_weights.sh

Download COCO

./data/get_coco_dataset.sh

Install via pip

This installation method is recommended, if you want to use this package as a dependency in another python project. This method only includes the code, is less isolated and may conflict with other packages. Weights and the COCO dataset need to be downloaded as stated above. See API for further information regarding the packages API. It also enables the CLI tools yolo-detect, yolo-train, and yolo-test everywhere without any additional commands.

pip3 install pytorchyolo --user

Test

Evaluates the model on COCO test dataset. To download this dataset as well as weights, see above.

poetry run yolo-test --weights weights/yolov3.weights
Model mAP (min. 50 IoU)
YOLOv3 608 (paper) 57.9
YOLOv3 608 (this impl.) 57.3
YOLOv3 416 (paper) 55.3
YOLOv3 416 (this impl.) 55.5

Inference

Uses pretrained weights to make predictions on images. Below table displays the inference times when using as inputs images scaled to 256x256. The ResNet backbone measurements are taken from the YOLOv3 paper. The Darknet-53 measurement marked shows the inference time of this implementation on my 1080ti card.

Backbone GPU FPS
ResNet-101 Titan X 53
ResNet-152 Titan X 37
Darknet-53 (paper) Titan X 76
Darknet-53 (this impl.) 1080ti 74
poetry run yolo-detect --images data/samples/

Train

For argument descriptions have a lock at poetry run yolo-train --help

Example (COCO)

To train on COCO using a Darknet-53 backend pretrained on ImageNet run:

poetry run yolo-train --data config/coco.data  --pretrained_weights weights/darknet53.conv.74

Tensorboard

Track training progress in Tensorboard:

poetry run tensorboard --logdir='logs' --port=6006

Storing the logs on a slow drive possibly leads to a significant training speed decrease.

You can adjust the log directory using --logdir when running tensorboard and yolo-train.

Train on Custom Dataset

Custom model

Run the commands below to create a custom model definition, replacing with the number of classes in your dataset.

./config/create_custom_model.sh <num-classes>  # Will create custom model 'yolov3-custom.cfg'

Classes

Add class names to data/custom/classes.names. This file should have one row per class name.

Image Folder

Move the images of your dataset to data/custom/images/.

Annotation Folder

Move your annotations to data/custom/labels/. The dataloader expects that the annotation file corresponding to the image data/custom/images/train.jpg has the path data/custom/labels/train.txt. Each row in the annotation file should define one bounding box, using the syntax label_idx x_center y_center width height. The coordinates should be scaled [0, 1], and the label_idx should be zero-indexed and correspond to the row number of the class name in data/custom/classes.names.

Define Train and Validation Sets

In data/custom/train.txt and data/custom/valid.txt, add paths to images that will be used as train and validation data respectively.

Train

To train on the custom dataset run:

poetry run yolo-train --model config/yolov3-custom.cfg --data config/custom.data

Add --pretrained_weights weights/darknet53.conv.74 to train using a backend pretrained on ImageNet.

API

You are able to import the modules of this repo in your own project if you install the pip package pytorchyolo.

An example prediction call from a simple OpenCV python script would look like this:

import cv2
from pytorchyolo import detect, models

# Load the YOLO model
model = models.load_model(
  "/yolov3.cfg", 
  "/yolov3.weights")

# Load the image as an numpy array
img = cv2.imread("")

# Runs the YOLO model on the image 
boxes = detect.detect_image(model, img)

print(boxes)

For more advanced usage look at the method's doc strings.

Credit

YOLOv3: An Incremental Improvement

Joseph Redmon, Ali Farhadi

Abstract
We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained this new network that’s pretty swell. It’s a little bigger than last time but more accurate. It’s still fast though, don’t worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at the old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared to 57.5 AP50 in 198 ms by RetinaNet, similar performance but 3.8× faster. As always, all the code is online at https://pjreddie.com/yolo/.

[Paper] [Project Webpage] [Authors' Implementation]

@article{yolov3,
  title={YOLOv3: An Incremental Improvement},
  author={Redmon, Joseph and Farhadi, Ali},
  journal = {arXiv},
  year={2018}
}
Owner
Erik Linder-Norén
ML engineer at Apple. Excited about machine learning, basketball and building things.
Erik Linder-Norén
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022