Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Overview

Multimodal Temporal Context Network (MTCN)

This repository implements the model proposed in the paper:

Evangelos Kazakos, Jaesung Huh, Arsha Nagrani, Andrew Zisserman, Dima Damen, With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021

Project webpage

arXiv paper

Citing

When using this code, kindly reference:

@INPROCEEDINGS{kazakos2021MTCN,
  author={Kazakos, Evangelos and Huh, Jaesung and Nagrani, Arsha and Zisserman, Andrew and Damen, Dima},
  booktitle={British Machine Vision Conference (BMVC)},
  title={With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition},
  year={2021}}

NOTE

Although we train MTCN using visual SlowFast features extracted from a model trained with video clips of 2s, at Table 3 of our paper and Table 1 of Appendix (Table 6 in the arXiv version) where we compare MTCN with SOTA, the results of SlowFast are from [1] where the model is trained with video clips of 1s. In the following table, we provide the results of SlowFast trained with 2s, for a direct comparison as we use this model to extract the visual features.

alt text

Requirements

Project's requirements can be installed in a separate conda environment by running the following command in your terminal: $ conda env create -f environment.yml.

Features

The extracted features for each dataset can be downloaded using the following links:

EPIC-KITCHENS-100:

EGTEA:

Pretrained models

We provide pretrained models for EPIC-KITCHENS-100:

  • Audio-visual transformer link
  • Language model link

Ground-truth

Train

EPIC-KITCHENS-100

To train the audio-visual transformer on EPIC-KITCHENS-100, run:

python train_av.py --dataset epic-100 --train_hdf5_path /path/to/epic-kitchens-100/features/audiovisual_slowfast_features_train.hdf5 
--val_hdf5_path /path/to/epic-kitchens-100/features/audiovisual_slowfast_features_val.hdf5 
--train_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_train.pkl 
--val_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_validation.pkl 
--batch-size 32 --lr 0.005 --optimizer sgd --epochs 100 --lr_steps 50 75 --output_dir /path/to/output_dir 
--num_layers 4 -j 8 --classification_mode all --seq_len 9

To train the language model on EPIC-KITCHENS-100, run:

python train_lm.py --dataset epic-100 --train_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_train.pkl 
--val_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_validation.pkl 
--verb_csv /path/to/epic-kitchens-100-annotations/EPIC_100_verb_classes.csv
--noun_csv /path/to/epic-kitchens-100-annotations/EPIC_100_noun_classes.csv
--batch-size 64 --lr 0.001 --optimizer adam --epochs 100 --lr_steps 50 75 --output_dir /path/to/output_dir 
--num_layers 4 -j 8 --num_gram 9 --dropout 0.1

EGTEA

To train the visual-only transformer on EGTEA (EGTEA does not have audio), run:

python train_av.py --dataset egtea --train_hdf5_path /path/to/egtea/features/visual_slowfast_features_train_split1.hdf5
--val_hdf5_path /path/to/egtea/features/visual_slowfast_features_test_split1.hdf5
--train_pickle /path/to/EGTEA_annotations/train_split1.pkl --val_pickle /path/to/EGTEA_annotations/test_split1.pkl 
--batch-size 32 --lr 0.001 --optimizer sgd --epochs 50 --lr_steps 25 38 --output_dir /path/to/output_dir 
--num_layers 4 -j 8 --classification_mode all --seq_len 9

To train the language model on EGTEA,

python train_lm.py --dataset egtea --train_pickle /path/to/EGTEA_annotations/train_split1.pkl
--val_pickle /path/to/EGTEA_annotations/test_split1.pkl 
--action_csv /path/to/EGTEA_annotations/actions_egtea.csv
--batch-size 64 --lr 0.001 --optimizer adam --epochs 50 --lr_steps 25 38 --output_dir /path/to/output_dir 
--num_layers 4 -j 8 --num_gram 9 --dropout 0.1

Test

EPIC-KITCHENS-100

To test the audio-visual transformer on EPIC-KITCHENS-100, run:

python test_av.py --dataset epic-100 --test_hdf5_path /path/to/epic-kitchens-100/features/audiovisual_slowfast_features_val.hdf5
--test_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_validation.pkl
--checkpoint /path/to/av_model/av_checkpoint.pyth --seq_len 9 --num_layers 4 --output_dir /path/to/output_dir
--split validation

To obtain scores of the model on the test set, simply use --test_hdf5_path /path/to/epic-kitchens-100/features/audiovisual_slowfast_features_test.hdf5, --test_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_test_timestamps.pkl and --split test instead. Since the labels for the test set are not available the script will simply save the scores without computing the accuracy of the model.

To evaluate your model on the validation set, follow the instructions in this link. In the same link, you can find instructions for preparing the scores of the model for submission in the evaluation server and obtain results on the test set.

Finally, to filter out improbable sequences using LM, run:

python test_av_lm.py --dataset epic-100
--test_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_validation.pkl 
--test_scores /path/to/audio-visual-results.pkl
--checkpoint /path/to/lm_model/lm_checkpoint.pyth
--num_gram 9 --split validation

Note that, --test_scores /path/to/audio-visual-results.pkl are the scores predicted from the audio-visual transformer. To obtain scores on the test set, use --test_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_test_timestamps.pkl and --split test instead.

Since we are providing the trained models for EPIC-KITCHENS-100, av_checkpoint.pyth and lm_checkpoint.pyth in the test scripts above could be either the provided pretrained models or model_best.pyth that is the your own trained model.

EGTEA

To test the visual-only transformer on EGTEA, run:

python test_av.py --dataset egtea --test_hdf5_path /path/to/egtea/features/visual_slowfast_features_test_split1.hdf5
--test_pickle /path/to/EGTEA_annotations/test_split1.pkl
--checkpoint /path/to/v_model/model_best.pyth --seq_len 9 --num_layers 4 --output_dir /path/to/output_dir
--split test_split1

To filter out improbable sequences using LM, run:

python test_av_lm.py --dataset egtea
--test_pickle /path/to/EGTEA_annotations/test_split1.pkl 
--test_scores /path/to/visual-results.pkl
--checkpoint /path/to/lm_model/model_best.pyth
--num_gram 9 --split test_split1

In each case, you can extract attention weights by simply including --extract_attn_weights at the input arguments of the test script.

References

[1] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, , Antonino Furnari, Jian Ma,Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, andMichael Wray, Rescaling Egocentric Vision: Collection Pipeline and Challenges for EPIC-KITCHENS-100, IJCV, 2021

License

The code is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, found here.

Owner
Evangelos Kazakos
Evangelos Kazakos
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022