Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Overview

Deep learning for time series forecasting

Example image Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the latest state of the art models (transformers, attention models, GRUs) and cutting edge concepts with easy to understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer based models and remains the only true end-to-end deep learnig for time series forecasting framework. Currently Task-TS from CoronaWhy primarily maintains this repository. Pull requests are welcome. Historically, this repository provided open source benchmark and codes for flash flood and river flow forecasting.

For additional tutorials (on Colab) and examples please see our tutorials repository.

branch status
master CircleCI
Build PY Upload Python Package
Documentation Documentation Status
CodeCov codecov
CodeFactor CodeFactor

Getting Started

Using the library

  1. Run pip install flood-forecast
  2. Detailed info on training models can be found on the Wiki.
  3. Check out our Confluence Documentation

Models currently supported

  1. Vanilla LSTM (LSTM): A basic LSTM that is suitable for multivariate time series forecasting and transfer learning.
  2. Full transformer (SimpleTransformer in model_dict): The full original transformer with all 8 encoder and decoder blocks. Requires passing the target in at inference.
  3. Simple Multi-Head Attention (MultiHeadSimple): A simple multi-head attention block and linear embedding layers. Suitable for transfer learning.
  4. Transformer with a linear decoder (CustomTransformerDecoder in model_dict): A transformer with n-encoder blocks (this is tunable) and a linear decoder.
  5. DA-RNN: (DARNN) A well rounded model with which utilizes a LSTM + attention.
  6. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting (called DecoderTransformer in model_dict):
  7. Transformer XL:
  8. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting (Informer)
  9. DeepAR

Forthcoming Models

We have a number of models we are planning on releasing soon. Please check our project board for more info

Integrations

Google Cloud Platform

Weights and Biases

Contributing

For instructions on contributing please see our contributions page and our project board.

Historical River Flow Data

Task 1 Stream Flow Forecasting

This task focuses on forecasting a stream's future flow/height (in either cfs or feet respectively) given factors such as current flow, temperature, and precipitation. In the future we plan on adding more variables that help with the stream flow prediction such as snow pack data and the surrounding soil moisture index.

Task 2 Flood severity forecasting

Task two focuses on predicting the severity of the flood based on the flood forecast, population information, and topography. Flood severity is defined based on several factors including the number of injuires, property damage, and crop damage.

If you use either the data or code from this repository please use the citation below. Additionally please cite the original authors of the models.

@misc{godfried2020flowdb,
      title={FlowDB a large scale precipitation, river, and flash flood dataset}, 
      author={Isaac Godfried and Kriti Mahajan and Maggie Wang and Kevin Li and Pranjalya Tiwari},
      year={2020},
      eprint={2012.11154},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
Comments
  • Informer compatibility with interpretability methods

    Informer compatibility with interpretability methods

    Currently Informer does not work with the shap interpretability methods. Refactoring SHAP to work with these methods will likely require so significant refactoring. As with Informer we have the target being passed. We should also likely design a helper function to better help with this. history, _, forecast_start_idx = csv_test_loader.get_from_start_date(datetime_start) background_tensor = _prepare_background_tensor(csv_test_loader)

    enhancement 
    opened by isaacmg 7
  • Inference mode for time series models

    Inference mode for time series models

    Create a predict function which does inference for for time series models without requiring the target present. This module should initialize the model using the given configuration file (with a weight path). It should be able to consume a CSV file or query a SQL table #102 (thought this functionality is not required in the initial PR). It should ideally make use of the existing evaluator.py module but

    Acceptance Criteria

    • [ ] Passing tests
    deployment 
    opened by isaacmg 7
  • about dataset

    about dataset

    So how can i download the dataset of FlowDB Dataset? Gsutil is not working? Can you give some details for your dataset, and tell us how to use you model for gour FlowDB? Thanks!

    opened by Vipermdl 6
  • Does datetime_start parameter in inference_params is forecasting start date?

    Does datetime_start parameter in inference_params is forecasting start date?

    In your Infer.ipynb datetime_start parameter is forecasting start date? (Your predict_cfs bucknet had been expired.)

    'inference_params': {'dataset_params': {'file_path': 'gs://predict_cfs/day_addition/01064118KPWM_flow.csv', 'forecast_history': 8, 'forecast_length': 1, 'interpolate_param': {'method': 'back_forward', 'params': {}}, 'relevant_cols': ['cfs1', 'precip', 'temp', 'month'], 'scaling': RobustScaler(), 'sort_column': 'hour_updated', 'target_col': ['cfs1']}, 'datetime_start': '2018-05-31', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'hours_to_forecast': 336, 'num_prediction_samples': 30, 'test_csv_path': 'gs://predict_cfs/day_addition/01064118KPWM_flow.csv'}

    opened by JJNET 5
  • Poor informer performance

    Poor informer performance

    The performance of the Informer model still seems to be poor at least with respect to forecast the Virgin River Flow. There may still be bugs therefore we should investigate it on other datasets and additional unittests. Possibly we should also try to replicate the performance on the ETH datasets the model was trained on (related to #314 ) The model does not seem to learn anything from the temporal data input.

    opened by isaacmg 5
  • Adding GPU support to the Informer

    Adding GPU support to the Informer

    This PR aims to the resolve prior issues #343 as well as fix a new problem related to the label_len in the data-loader. This PR in addition includes documentation updates to the Informer and additional information on how to use relevant data-loaders and SHAP features.

    opened by isaacmg 5
  • DecoderTransformer: Distinguishing Know inputs from Observed inputs

    DecoderTransformer: Distinguishing Know inputs from Observed inputs

    Hello Isaac. First of all thank you for this brilliant project. I was able to run the Decoder Transformer on the EU Wind Energy dataset.

    One question though. The model's paper, when defining the problem, says that some exogenous time series are known until the forecast horizon. For example, I would like to add the wind forecast as a feature with a middle dimension equals to "forecast_length" and with the same time idx as the target. Is there a way to model this in your config_file or at a lower level within the Loader objects?

    Thank you

    Lorenzo Ostano

    opened by Vergangenheit 5
  • TypeError: Object of type Tensor is not JSON serializable when running train_transformer_style with takes_target as 1

    TypeError: Object of type Tensor is not JSON serializable when running train_transformer_style with takes_target as 1

    Traceback (most recent call last): File "flood_forecast/trainer.py", line 108, in main() File "flood_forecast/trainer.py", line 103, in main train_function(training_config["model_type"], training_config) File "flood_forecast/trainer.py", line 42, in train_function train_transformer_style(model=trained_model, File "/home/harsh/Documents/Coronawhy/flow-forecast/flood_forecast/pytorch_training.py", line 146, in train_transformer_style model.save_model(model_filepath, max_epochs) File "/home/harsh/Documents/Coronawhy/flow-forecast/flood_forecast/time_model.py", line 152, in save_model json.dump(self.params, p) File "/home/harsh/anaconda3/envs/flow-forecast/lib/python3.8/json/init.py", line 179, in dump for chunk in iterable: File "/home/harsh/anaconda3/envs/flow-forecast/lib/python3.8/json/encoder.py", line 431, in _iterencode yield from _iterencode_dict(o, _current_indent_level) File "/home/harsh/anaconda3/envs/flow-forecast/lib/python3.8/json/encoder.py", line 405, in _iterencode_dict yield from chunks File "/home/harsh/anaconda3/envs/flow-forecast/lib/python3.8/json/encoder.py", line 405, in _iterencode_dict yield from chunks File "/home/harsh/anaconda3/envs/flow-forecast/lib/python3.8/json/encoder.py", line 438, in _iterencode o = _default(o) File "/home/harsh/anaconda3/envs/flow-forecast/lib/python3.8/json/encoder.py", line 179, in default raise TypeError(f'Object of type {o.class.name} ' TypeError: Object of type Tensor is not JSON serializable

    opened by 97harsh 5
  • Add meta-data fusion method and documentation

    Add meta-data fusion method and documentation

    Based on #100 we want to fuse meta-data with temporal data to enable better time series forecasts.

    • [x] Create a design document of meta-data fusion methods and explain relevant approaches
    • [x] Review design document with @kritim13 and other teammates.
    • [x] Implement agreed upon approach
    • [x] Create a JSON config file and appropriate unit tests.
    • [x] Test end to end in the Kaggle Notebook.
    meta-data 
    opened by isaacmg 5
  • Get ASOS data on GCS for years 2014-2019

    Get ASOS data on GCS for years 2014-2019

    Get all the data on GCS for those dates.

    • [x] Create looping function to perform action
    • [x] Create list of ASOS stations already saved with path on GCS. Upload this file to GCS.
    • [x] Run and get all data on GCS for all gages
    opened by isaacmg 5
  • DecoderTransformer not implemented as paper at all

    DecoderTransformer not implemented as paper at all

    did I miss something? The decodertransformer which claims to implement the paper(Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting) in the document is not even close to what the paper proposed. There are no key component like conv1d layers for locality and logsparse. If we didn't implement that paper, then really shouldn't list it in the document.

    opened by mvccn 4
  • Example auto-encoder time series

    Example auto-encoder time series

    We could use a detailed end-to-end example of using an AutoEncoder to create representations of temporal data. This should likely be done on Kaggle then added to the flow tutorials repo as a lin.

    documentation 
    opened by isaacmg 0
  • Pyre type error fixed.

    Pyre type error fixed.

    "filename": "flood_forecast/preprocessing/process_usgs.py" "warning_type": "Invalid type [31]" "warning_message": " Expression (pandas.DataFrame, int, int, int) is not a valid type." "warning_line": 82 "fix": remove int,int,int

    opened by luca-digrazia 0
  • Bump shap from 0.40.0 to 0.41.0

    Bump shap from 0.40.0 to 0.41.0

    Bumps shap from 0.40.0 to 0.41.0.

    Release notes

    Sourced from shap's releases.

    v0.41.0

    Lots of bugs fixes and API improvements.

    Commits
    • 510c4b6 Merge pull request #2242 from ravwojdyla/allow-to-control-the-heatmap-size
    • dd967b6 Merge branch 'master' of https://github.com/slundberg/shap
    • a791685 fix std to account for averaging
    • 6995c03 Merge branch 'master' into allow-to-control-the-heatmap-size
    • b6e90c8 Merge pull request #2580 from alexisdrakopoulos/feat/refactor_exceptions
    • 4921c50 Merge pull request #2162 from TheZL/xgbmodel_buffer_lstrip_error_correction
    • a8dbefd Clean up the intro doc notebook
    • 84ddd09 Merge branch 'feat/refactor_exceptions' of github.com:alexisdrakopoulos/shap ...
    • 348dc7d accidental import
    • 2cfa489 Merge branch 'master' into xgbmodel_buffer_lstrip_error_correction
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    dependencies 
    opened by dependabot[bot] 0
Releases(FF_FIXES_BRANCH_VER)
Owner
AIStream
AIStream develops open source deep learning solutions for real world problems
AIStream
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023