Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Overview

Propose-Reduce VIS

This repo contains the official implementation for the paper:

Video Instance Segmentation with a Propose-Reduce Paradigm

Huaijia Lin*, Ruizheng Wu*, Shu Liu, Jiangbo Lu, Jiaya Jia

ICCV 2021 | Paper

TeaserImage

Installation

Please refer to INSTALL.md.

Demo

You can compute the VIS results for your own videos.

  1. Download pretrained weight.
  2. Put example videos in 'demo/inputs'. We support two types of inputs, frames directories or .mp4 files (see example for details).
  3. Run the following script and obtain the results in demo/outputs.
sh demo.sh

Data Preparation

(1) Download the videos and jsons of val set from YouTube-VIS 2019

(2) Download the videos and jsons of val set from YouTube-VIS 2021

(3) Symlink the corresponding dataset and json files to the data folder

mkdir data
data
├── valset_ytv19 --> /path/to/ytv2019/vos/valid/JPEGImages/ 
├── valid_ytv19.json --> /path/to/ytv2019/vis/valid.json
├── valset_ytv21 --> /path/to/ytv2021/vis/valid/JPEGImages/ 
├── valid_ytv21.json --> /path/to/ytv2021/vis/valid/instances.json

Results

We provide the results of several pretrained models and corresponding scripts on different backbones. The results have slight differences from the paper because we make minor modifications to the inference codes.

Download the pretrained models and put them in pretrained folder.

mkdir pretrained
Dataset Method Backbone CA Reduce AP [email protected] download
YouTube-VIS 2019 Seq Mask R-CNN ResNet-50 40.8 49.9 model | scripts
YouTube-VIS 2019 Seq Mask R-CNN ResNet-50 42.5 56.8 scripts
YouTube-VIS 2019 Seq Mask R-CNN ResNet-101 43.8 52.7 model | scripts
YouTube-VIS 2019 Seq Mask R-CNN ResNet-101 45.2 59.0 scripts
YouTube-VIS 2019 Seq Mask R-CNN ResNeXt-101 47.6 56.7 model | scripts
YouTube-VIS 2019 Seq Mask R-CNN ResNeXt-101 48.8 62.2 scripts
YouTube-VIS 2021 Seq Mask R-CNN ResNet-50 39.6 47.5 model | scripts
YouTube-VIS 2021 Seq Mask R-CNN ResNet-50 41.7 54.9 scripts
YouTube-VIS 2021 Seq Mask R-CNN ResNeXt-101 45.6 52.9 model | scripts
YouTube-VIS 2021 Seq Mask R-CNN ResNeXt-101 47.2 57.6 scripts

Evaluation

YouTube-VIS 2019: A json file will be saved in `../Results_ytv19' folder. Please zip and upload to the codalab server.

YouTube-VIS 2021: A json file will be saved in `../Results_ytv21' folder. Please zip and upload to the codalab server.

TODOs

Citation

If you find this work useful in your research, please cite:

@article{lin2021video,
  title={Video Instance Segmentation with a Propose-Reduce Paradigm},
  author={Lin, Huaijia and Wu, Ruizheng and Liu, Shu and Lu, Jiangbo and Jia, Jiaya},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Contact

If you have any questions regarding the repo, please feel free to contact me ([email protected]) or create an issue.

Acknowledgments

This repo is based on MMDetection, MaskTrackRCNN, STM, MMCV and COCOAPI.

Owner
DV Lab
Deep Vision Lab
DV Lab
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
LBK 35 Dec 26, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022