This tutorial repository is to introduce the functionality of KGTK to first-time users

Overview

Welcome to the KGTK notebook tutorial

The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledge Graph Toolkit (KGTK) is a comprehensive framework for the creation and exploitation of large hyper-relational knowledge graphs (KGs), designed for ease of use, scalability, and speed. The tutorial consists of several notebooks that demonstrate how to perform network analysis, graph profiling, knowledge enrichment, and embedding computation over a portion of the Wikidata knowledge graph. The tutorial notebooks can be found in the tutorial folder. All notebooks require minimum configuration and can be run locally or in Google Colab in a matter of a few minutes. The input data for the notebooks is stored in the datasets folder. Basic understanding of knowledge graphs is sufficient for this tutorial.

This repository has been created for the purpose of the KGTK tutorial presented at ISWC 2021. For more information on this tutorial, see our website.

Notebooks

  1. 01-kgtk-introduction.ipynb introduction to kgtk and kypher.
  2. 02-kg-profiling.ipynb performs profiling of a Wikidata subgraph, by computing deep statistics of its classes, instances, and properties.
  3. 03-kg-graph-embeddings.ipynb computes graph embeddings of a Wikidata subgraph using kgtk, demonstrates how to use these embeddings for similarity estimation, and visualizes them.
  4. 04-kg-enrichment-with-csv.ipynb shows how structured data from IMDb can be integrated into a subset of Wikidata.
  5. 05-kg-enrichment-with-lod.ipynb shows how LOD graphs like Getty Vocabulary can be used to enrich Wikidata by using kgtk operations.
  6. 06-kg-network-analysis.ipynb analyzes the family network of Arnold Schwarzenegger (Q2685) in Wikidata by using KGTK operations.
  7. 07-kg-constraint-validation.ipynb demonstrates how to do constraint validation on one wikidata property.

Running the notebooks in Google Colab

List of steps required to be able to run the ISI Google colab Notebooks.

Make a copy of the notebooks to your Google Drive.

The following tutorial notebooks are available to run in Google Colab

  1. 01-kgtk-introduction.ipynb
  2. 02-kg-profiling.ipynb
  3. 03-kg-graph-embeddings.ipynb
  4. 04-kg-enrichment-with-csv.ipynb
  5. 05-kg-enrichment-with-lod.ipynb
  6. 06-kg-network-analysis.ipynb
  7. 07-kg-constraint-validation.ipynb
  8. kgtk-browser.ipynb (experimental)

Click on a link, it'll take you to the Google Colab notebook. These are readonly notebook links.

Click on Save a copy in Drive from the File menu as shown.

Save a Copy

This will create a copy of the notebook in your Google Drive.

Install kgtk

Run the first cell to install kgtk.

If you see this warning,

Author

click on Run anyway to continue

You'll see an error after the install finishes,

Restart Runtime

This is because of a conflict in Google Colab's python environment. You have to click on the Restart Runtime button.

You do not have to install kgtk again.

In some notebooks, there are a few more installation cells, in case you see the same error as above, please click on Restart Runtime

Run the cells in the notebook

Now, simply run all the cells. The notebook should run successfully.

Google Colab Caveats

  • The colab VM and python environment is ephemeral. The VM will reset after a while, all the installed libraries and files produced will be lost.
  • Google Colab File IO. Download / Upload files to Google Colab
  • You can connect a google drive to the colab notebook to read from and save to.
  • Users can run the same colab notebook by sharing it with a link. This can have unwanted complications in case multiple people run the same cell at the same time.

Contact

Owner
USC ISI I2
USC ISI I2
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022