This tutorial repository is to introduce the functionality of KGTK to first-time users

Overview

Welcome to the KGTK notebook tutorial

The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledge Graph Toolkit (KGTK) is a comprehensive framework for the creation and exploitation of large hyper-relational knowledge graphs (KGs), designed for ease of use, scalability, and speed. The tutorial consists of several notebooks that demonstrate how to perform network analysis, graph profiling, knowledge enrichment, and embedding computation over a portion of the Wikidata knowledge graph. The tutorial notebooks can be found in the tutorial folder. All notebooks require minimum configuration and can be run locally or in Google Colab in a matter of a few minutes. The input data for the notebooks is stored in the datasets folder. Basic understanding of knowledge graphs is sufficient for this tutorial.

This repository has been created for the purpose of the KGTK tutorial presented at ISWC 2021. For more information on this tutorial, see our website.

Notebooks

  1. 01-kgtk-introduction.ipynb introduction to kgtk and kypher.
  2. 02-kg-profiling.ipynb performs profiling of a Wikidata subgraph, by computing deep statistics of its classes, instances, and properties.
  3. 03-kg-graph-embeddings.ipynb computes graph embeddings of a Wikidata subgraph using kgtk, demonstrates how to use these embeddings for similarity estimation, and visualizes them.
  4. 04-kg-enrichment-with-csv.ipynb shows how structured data from IMDb can be integrated into a subset of Wikidata.
  5. 05-kg-enrichment-with-lod.ipynb shows how LOD graphs like Getty Vocabulary can be used to enrich Wikidata by using kgtk operations.
  6. 06-kg-network-analysis.ipynb analyzes the family network of Arnold Schwarzenegger (Q2685) in Wikidata by using KGTK operations.
  7. 07-kg-constraint-validation.ipynb demonstrates how to do constraint validation on one wikidata property.

Running the notebooks in Google Colab

List of steps required to be able to run the ISI Google colab Notebooks.

Make a copy of the notebooks to your Google Drive.

The following tutorial notebooks are available to run in Google Colab

  1. 01-kgtk-introduction.ipynb
  2. 02-kg-profiling.ipynb
  3. 03-kg-graph-embeddings.ipynb
  4. 04-kg-enrichment-with-csv.ipynb
  5. 05-kg-enrichment-with-lod.ipynb
  6. 06-kg-network-analysis.ipynb
  7. 07-kg-constraint-validation.ipynb
  8. kgtk-browser.ipynb (experimental)

Click on a link, it'll take you to the Google Colab notebook. These are readonly notebook links.

Click on Save a copy in Drive from the File menu as shown.

Save a Copy

This will create a copy of the notebook in your Google Drive.

Install kgtk

Run the first cell to install kgtk.

If you see this warning,

Author

click on Run anyway to continue

You'll see an error after the install finishes,

Restart Runtime

This is because of a conflict in Google Colab's python environment. You have to click on the Restart Runtime button.

You do not have to install kgtk again.

In some notebooks, there are a few more installation cells, in case you see the same error as above, please click on Restart Runtime

Run the cells in the notebook

Now, simply run all the cells. The notebook should run successfully.

Google Colab Caveats

  • The colab VM and python environment is ephemeral. The VM will reset after a while, all the installed libraries and files produced will be lost.
  • Google Colab File IO. Download / Upload files to Google Colab
  • You can connect a google drive to the colab notebook to read from and save to.
  • Users can run the same colab notebook by sharing it with a link. This can have unwanted complications in case multiple people run the same cell at the same time.

Contact

Owner
USC ISI I2
USC ISI I2
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022