Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Related tags

Deep LearningPGCN
Overview

Graph Convolutional Networks for Temporal Action Localization

This repo holds the codes and models for the PGCN framework presented on ICCV 2019

Graph Convolutional Networks for Temporal Action Localization Runhao Zeng*, Wenbing Huang*, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, Chuang Gan, ICCV 2019, Seoul, Korea.

[Paper]

Updates

20/12/2019 We have uploaded the RGB features, trained models and evaluation results! We found that increasing the number of proposals to 800 in the testing further boosts the performance on THUMOS14. We have also updated the proposal list.

04/07/2020 We have uploaded the I3D features on Anet, the training configurations files in data/dataset_cfg.yaml and the proposal lists for Anet.

Contents



Usage Guide

Prerequisites

[back to top]

The training and testing in PGCN is reimplemented in PyTorch for the ease of use.

Other minor Python modules can be installed by running

pip install -r requirements.txt

Code and Data Preparation

[back to top]

Get the code

Clone this repo with git, please remember to use --recursive

git clone --recursive https://github.com/Alvin-Zeng/PGCN

Download Datasets

We support experimenting with two publicly available datasets for temporal action detection: THUMOS14 & ActivityNet v1.3. Here are some steps to download these two datasets.

  • THUMOS14: We need the validation videos for training and testing videos for testing. You can download them from the THUMOS14 challenge website.
  • ActivityNet v1.3: this dataset is provided in the form of YouTube URL list. You can use the official ActivityNet downloader to download videos from the YouTube.

Download Features

Here, we provide the I3D features (RGB+Flow) for training and testing.

THUMOS14: You can download it from Google Cloud or Baidu Cloud.

Anet: You can download the I3D Flow features from Baidu Cloud (password: jbsa) and the I3D RGB features from Google Cloud (Note: set the interval to 16 in ops/I3D_Pooling_Anet.py when training with RGB features)

Download Proposal Lists (ActivityNet)

Here, we provide the proposal lists for ActivityNet 1.3. You can download them from Google Cloud

Training PGCN

[back to top]

Plesse first set the path of features in data/dataset_cfg.yaml

train_ft_path: $PATH_OF_TRAINING_FEATURES
test_ft_path: $PATH_OF_TESTING_FEATURES

Then, you can use the following commands to train PGCN

python pgcn_train.py thumos14 --snapshot_pre $PATH_TO_SAVE_MODEL

After training, there will be a checkpoint file whose name contains the information about dataset and the number of epoch. This checkpoint file contains the trained model weights and can be used for testing.

Testing Trained Models

[back to top]

You can obtain the detection scores by running

sh test.sh TRAINING_CHECKPOINT

Here, TRAINING_CHECKPOINT denotes for the trained model. This script will report the detection performance in terms of mean average precision at different IoU thresholds.

The trained models and evaluation results are put in the "results" folder.

You can obtain the two-stream results on THUMOS14 by running

sh test_two_stream.sh

THUMOS14

[email protected] (%) RGB Flow RGB+Flow
P-GCN (I3D) 37.23 47.42 49.07 (49.64)

#####Here, 49.64% is obtained by setting the combination weights to Flow:RGB=1.2:1 and nms threshold to 0.32

Other Info

[back to top]

Citation

Please cite the following paper if you feel PGCN useful to your research

@inproceedings{PGCN2019ICCV,
  author    = {Runhao Zeng and
               Wenbing Huang and
               Mingkui Tan and
               Yu Rong and
               Peilin Zhao and
               Junzhou Huang and
               Chuang Gan},
  title     = {Graph Convolutional Networks for Temporal Action Localization},
  booktitle   = {ICCV},
  year      = {2019},
}

Contact

For any question, please file an issue or contact

Runhao Zeng: [email protected]
Owner
Runhao Zeng
Runhao Zeng
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022