Dragonfly is an open source python library for scalable Bayesian optimisation.

Overview


Dragonfly is an open source python library for scalable Bayesian optimisation.

Bayesian optimisation is used for optimising black-box functions whose evaluations are usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to scale up Bayesian optimisation to expensive large scale problems. These include features/functionality that are especially suited for high dimensional optimisation (optimising for a large number of variables), parallel evaluations in synchronous or asynchronous settings (conducting multiple evaluations in parallel), multi-fidelity optimisation (using cheap approximations to speed up the optimisation process), and multi-objective optimisation (optimising multiple functions simultaneously).

Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested on Linux, macOS, and Windows platforms. For documentation, installation, and a getting started guide, see our readthedocs page. For more details, see our paper.

 

Installation

See here for detailed instructions on installing Dragonfly and its dependencies.

Quick Installation: If you have done this kind of thing before, you should be able to install Dragonfly via pip.

$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian
$ pip install numpy
$ pip install dragonfly-opt -v

Testing the Installation: You can import Dragonfly in python to test if it was installed properly. If you have installed via source, make sure that you move to a different directory to avoid naming conflicts.

$ python
>>> from dragonfly import minimise_function
>>> # The first argument below is the function, the second is the domain, and the third is the budget.
>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10);  
...
>>> min_val, min_pt
(-0.32122746026750953, array([-0.7129672]))

Due to stochasticity in the algorithms, the above values for min_val, min_pt may be different. If you run it for longer (e.g. min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)), you should get more consistent values for the minimum.

If the installation fails or if there are warning messages, see detailed instructions here.

 

Quick Start

Dragonfly can be used directly in the command line by calling dragonfly-script.py or be imported in python code via the maximise_function function in the main library or in ask-tell mode. To help get started, we have provided some examples in the examples directory. See our readthedocs getting started pages (command line, Python, Ask-Tell) for examples and use cases.

Command line: Below is an example usage in the command line.

$ cd examples
$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt

In Python code: The main APIs for Dragonfly are defined in dragonfly/apis. For their definitions and arguments, see dragonfly/apis/opt.py and dragonfly/apis/moo.py. You can import the main API in python code via,

from dragonfly import minimise_function, maximise_function
func = lambda x: x ** 4 - x**2 + 0.1 * x
domain = [[-10, 10]]
max_capital = 100
min_val, min_pt, history = minimise_function(func, domain, max_capital)
print(min_val, min_pt)
max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital)
print(max_val, max_pt)

Here, func is the function to be maximised, domain is the domain over which func is to be optimised, and max_capital is the capital available for optimisation. The domain can be specified via a JSON file or in code. See here, here, here, here, here, here, here, here, here, here, and here for more detailed examples.

In Ask-Tell Mode: Ask-tell mode provides you more control over your experiments where you can supply past results to our API in order to obtain a recommendation. See the following example for more details.

For a comprehensive list of uses cases, including multi-objective optimisation, multi-fidelity optimisation, neural architecture search, and other optimisation methods (besides Bayesian optimisation), see our readthe docs pages (command line, Python, Ask-Tell)).

 

Contributors

Kirthevasan Kandasamy: github, webpage
Karun Raju Vysyaraju: github, linkedin
Anthony Yu: github, linkedin
Willie Neiswanger: github, webpage
Biswajit Paria: github, webpage
Chris Collins: github, webpage

Acknowledgements

Research and development of the methods in this package were funded by DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL.

Citation

If you use any part of this code in your work, please cite our JMLR paper.

@article{JMLR:v21:18-223,
  author  = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing},
  title   = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {81},
  pages   = {1-27},
  url     = {http://jmlr.org/papers/v21/18-223.html}
}

License

This software is released under the MIT license. For more details, please refer LICENSE.txt.

For questions, please email [email protected].

"Copyright 2018-2019 Kirthevasan Kandasamy"

This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.

An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu

PyCaret 6.7k Jan 08, 2023
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022