Pandas and Dask test helper methods with beautiful error messages.

Related tags

Data Analysisbeavis
Overview

beavis

Pandas and Dask test helper methods with beautiful error messages.

cornholio

test helpers

These test helper methods are meant to be used in test suites. They provide descriptive error messages to allow for a seamless development workflow.

The test helpers are inspired by chispa and spark-fast-tests, popular test helper libraries for the Spark ecosystem.

There are built-in Pandas testing methods that can also be used, but they don't provide error messages that are as easy to parse. The following sections compare the built-in Pandas output and what's output by Beavis, so you can choose for yourself.

Column comparisons

The built-in assert_series_equal method does not make it easy to decipher the rows that are equal and the rows that are different, so quickly fixing your tests and maintaining flow is hard.

Here's the built-in error message when comparing series that are not equal.

df = pd.DataFrame({"col1": [1042, 2, 9, 6], "col2": [5, 2, 7, 6]})
pd.testing.assert_series_equal(df["col1"], df["col2"])
>   ???
E   AssertionError: Series are different
E
E   Series values are different (50.0 %)
E   [index]: [0, 1, 2, 3]
E   [left]:  [1042, 2, 9, 6]
E   [right]: [5, 2, 7, 6]

Here's the beavis error message that aligns rows and highlights the mismatches in red.

import beavis

beavis.assert_pd_column_equality(df, "col1", "col2")

BeavisColumnsNotEqualError

You can also compare columns in a Dask DataFrame.

ddf = dd.from_pandas(df, npartitions=2)
beavis.assert_dd_column_equality(ddf, "col1", "col2")

The assert_dd_column_equality error message is similarly descriptive.

DataFrame comparisons

The built-in pandas.testing.assert_frame_equal method doesn't output an error message that's easy to understand, see this example.

df1 = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
df2 = pd.DataFrame({'col1': [5, 2], 'col2': [3, 4]})
pd.testing.assert_frame_equal(df1, df2)
E   AssertionError: DataFrame.iloc[:, 0] (column name="col1") are different
E
E   DataFrame.iloc[:, 0] (column name="col1") values are different (50.0 %)
E   [index]: [0, 1]
E   [left]:  [1, 2]
E   [right]: [5, 2]

beavis provides a nicer error message.

beavis.assert_pd_equality(df1, df2)

BeavisDataFramesNotEqualError

DataFrame comparison options:

  • check_index (default True)
  • check_dtype (default True)

Let's convert the Pandas DataFrames to Dask DataFrames and use the assert_dd_equality function to check they're equal.

ddf1 = dd.from_pandas(df1, npartitions=2)
ddf2 = dd.from_pandas(df2, npartitions=2)
beavis.assert_dd_equality(ddf1, ddf2)

These DataFrames aren't equal, so we'll get a good error message that's easy to debug.

Dask DataFrames not equal

Development

Install Poetry and run poetry install to create a virtual environment with all the Beavis dependencies on your machine.

Other useful commands:

  • poetry run pytest tests runs the test suite
  • poetry run black . to format the code
  • poetry build packages the library in a wheel file
  • poetry publish releases the library in PyPi (need correct credentials)
Owner
Matthew Powers
Data engineer. Like Scala, Spark, Ruby, data, and math.
Matthew Powers
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Raphael Vallat 1.2k Dec 31, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
Ejercicios Panda usando Pandas

Readme Below we add configuration details to locally test your application To co

1 Jan 22, 2022
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023