Making the DAEN information accessible.

Overview

AccessibleAdverseEventNotification

Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medications including the COVID-19 vaccines. This Database of Adverse Event Notifications (DAEN) is available to the public via this awful web interface. The most recent two weeks is never available.

The DAEN website doesn't provide information in a format that might be useful for analysis. Instead you have to scrape the information by entering each individual day and collecting the results from two tables which might span multiple pages. I've already done that and the code is here (this code isn't great, but it is good enough to get the job done).

Please be aware that the numbers reported in DAEN are probably significantly less than the actual number of adverse events and deaths. As the DAEN website states:

Adverse event reports from consumers and health professionals to the TGA are voluntary, so there is under-reporting by these groups of adverse events related to therapeutic goods in Australia. This is the same around the world.

The scraped data is found in the data directory. These files are tab separated files which you can easily import in to a spreadsheet program. All of the files are only for COVID-19 vaccines.

  • DAEN_webscrape_simple.txt This file shows the date (twice for reasons that made sense at the time, but don't necessarily make sense anymore), the number of cases reported that day, the number of cases with a single suspected medicine for that day, and the number of deaths reported that day.
  • DAEN_webscrape_medsummary.txt This file gives a daily count of each adverse event category. Please note that if one patient had multiple adverse events, then each event would be counted in the appropriate category.
  • DAEN_webscrape_listofreports.txt This file provides the individual reports and includes sex and age (when recorded).

Figure 1 shows some of the basic information such as number of adverse events and deaths reported each day for the COVID-19 vaccines, myocarditis, pericarditis and the more general term cardiac disorder.

Figure 1 Figure 1.

Figure 2 shows a histogram of reported cases of myocarditis and pericarditis from the COVID-19 vaccine. Please note that the age group 10-19 is somewhat distorted as the age 10-11 should not receive the vaccine (although there are cases of 8 year olds getting the vaccine when that should not have occurred). This age group also has a significantly lower uptake than other age groups.

Figure 2 Figure 2.

Figures 3 and 4 plot the reports of myocarditis by age grouped by sex or manufacturer respectively. Figures 5 and 6 are the same for pericarditis. A '-' is used where an age was not given in the report.

Figure 3 Figure 3.

Figure 4 Figure 4.

Figure 5 Figure 5.

Figure 6 Figure 6.

Figure 7 shows how the histogram for myocarditis has progressed over time.

Figure 7
Figure 7.

Figure 8 shows the death rate of people in Australia who contracted COVID-19. Data taken from health.gov on 1/12/2021. Bottom graph is zoomed in to 1% to see what is happening with those under the age of 60.

Figure 8
Figure 8.

A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Pipeline to convert a haploid assembly into diploid

HapDup (haplotype duplicator) is a pipeline to convert a haploid long read assembly into a dual diploid assembly. The reconstructed haplotypes

Mikhail Kolmogorov 50 Jan 05, 2023
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
Tools for working with MARC data in Catalogue Bridge.

catbridge_tools Tools for working with MARC data in Catalogue Bridge. Borrows heavily from PyMarc

1 Nov 11, 2021
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022