Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

Overview

pypi docs License

English | 简体中文

Easy Parallel Library

Overview

Easy Parallel Library (EPL) is a general and efficient library for distributed model training.

  • Usability - Users can implement different parallelism strategies with a few lines of annotations, including data parallelism, pipeline parallelism, tensor model parallelism, and their hybrids.
  • Memory Efficient - EPL provides various memory-saving techniques, including gradient checkpoint, ZERO, CPU Offload, etc. Users are able to train larger models with fewer computing resources.
  • High Performance - EPL provides an optimized communication library to achieve high scalability and efficiency.

For more information, you may read the docs.

EPL Model Zoo provides end-to-end parallel training examples.

Installation

To install EPL, please refer to the following instructions.

Examples

Here are a few examples of different parallelism strategies by changing only annotations. Please refer to API documentation for API details and tutorials for more examples.

Data Parallelism

The following example shows a basic data parallelism annotation. The data parallelism degree is determined by the allocated GPU number.

+ import epl
+ epl.init()
+ with epl.replicate(device_count=1):
    model()

Pipeline Parallelism

The following example shows pipeline parallelism with two pipeline stages, each stage is computed with one GPU. If the total GPU number is 4, EPL will automatically apply two-degree data parallelism over the model pipeline.

+ import epl
+ 
+ config = epl.Config({"pipeline.num_micro_batch": 4})
+ epl.init(config)
+ with epl.replicate(device_count=1, name="stage_0"):
    model_part1()
+ with epl.replicate(device_count=1, name="stage_1"):
    model_part2()

Tensor Model Parallelism

The following example shows a tensor model parallelism annotation. We apply data parallelism to the ResNet part, and apply tensor model parallelism to classification part.

+ import epl
+ config = epl.Config({"cluster.colocate_split_and_replicate": True})
+ epl.init(config)
+ with epl.replicate(8):
    ResNet()
+ with epl.split(8):
    classification()

Publication

If you use EPL in your publication, please cite it by using the following BibTeX entry.

@misc{jia2021whale,
      title={Whale: Scaling Deep Learning Model Training to the Trillions}, 
      author={Xianyan Jia and Le Jiang and Ang Wang and Jie Zhang and Xinyuan Li and Wencong Xiao and Langshi chen and Yong Li and Zhen Zheng and Xiaoyong Liu and Wei Lin},
      year={2021},
      eprint={2011.09208},
      archivePrefix={arXiv},
      primaryClass={cs.DC}
}

Contact Us

Join the Official Discussion Group on DingTalk.

DingTalk Group

Owner
Alibaba
Alibaba Open Source
Alibaba
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022