Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

Overview

extrinsic2pyramid

Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

img

Intro

A very simple and straightforward module for visualizing camera pose on 3D space. This module just have a only utility, as like its name, to convert extrinsic camera parameter(transform matrix) to visual 3D square pyramid, the pyramid's vertex not on the base side(square) is the camera's focal point and The optical axis passes through the focal point and the center of the base.

Note that, this module do not contain any calibration algorithm. It's just for visualizing calibrated parameter.

Requirements

numpy >= 1.2

numpy-quaternion

matplotlib

glob

Trouble Shooting

ImportError: numpy.core.multiarray failed to import

conda install -c conda-forge quaternion

Usage

To visualize extrinsic camera parameters, the only module you need to import is, 'CameraPoseVisualizer' from 'util.camera_pose_visualizer'

from util.camera_pose_visualizer import CameraPoseVisualizer

Initialize visualizer with 3 argument, the limit of visually plotted space.(the minimum/maximum value of x, y, z)

visualizer = CameraPoseVisualizer([-50, 50], [-50, 50], [0, 100])

Conver extrinsic matrix with visualizer. it has 3 argument, extrinsic matrix, color of pyramid, scale of pyramid. The color of pyramid can be both represented as a character like 'r', 'c', 'k', and represented as RGBa sequence.

visualizer.extrinsic2pyramid(np.eye(4), 'c', 10)

... That's all about this module. There are other python packages that can visualize camera pose on visual 3D space and even have more utilities, but, For who just want to visualize camera pose and do not want to spend time to learn NEW BIG multi-purpose 3D graphical library, for example, for SLAM Engineer who just want to qualitatively overview his localization result, or for 3D Machine Learning Engineer who just want to visually overview geometric constraint of new data before preprocess it, This Module can be a quite reasonable choice.

The core source-code of this module is just about-50-lines(not importing any other non-basic sub-module). About-50-line is all you need to grasp this module, that means, easy to be merged to your project, and easy to be a base-module for more complex architecture(see demo2.py).

Dataset

The sample camera parameters in dataset directory is from YCB-M Dataset [1]. The data hierarchy used in this dataset is one of a standard hierarchy that, in particular, almost of NVIDIA's open-sources support. And this dataset share its hierarchy with other datasets like, YCB-VIDEO[2] and FAT[3].

Demo

demo1.py

In fact, just 11-lines of demo1.py is all about the usage of this module.

img

demo2.py

This script is a example that manipulate this module for more complex architecture. Frankly, I made this module as a visualizing tool to visually analyze camera trajectory of YCB-M dataset before numerically preprocess it. I need indoor scenarios which have these constraints, 1.fixed multiple view cameras and we know its parameters. 2.cameras maintain same pose along all scenes. But there is a no dataset perfectly match with these. So, i have to search other scenarios. The alternative scenario i found is that, 1.static scene, 2.moving camera, 3.but along the scenes, there must be at least 4 point, which most of camera-trajectory from different scenes intersect(and camera-pose at that points are similar). Picking up intersecting points and Using them as like fixed multiple view cameras will quite work well for me. But before preprocess it in earnest. By watching trajectory scene-wisely and frame-wisely, I can make a rough estimate and a intuition about the posibility whether this dataset can pass the constraint-3.

img

The colors represent different scenes.

img

The distribution of color represents different frames.

Roadmap

Utility that can toggle trajectory scene-wisely or frame-wisely.

GUI Interface.

References

[1] T. Grenzdörffer, M. Günther, and J. Hertzberg, "YCB-M: A Multi-Camera RGB-D Dataset for Object Recognition and 6DoF Pose Estimation".

[2] Y. Xiang, T. Schmidt, V. Narayanan and D. Fox. "PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes".

[3] J. Tremblay, T. To, and S. Birchfield, Falling Things: "A Synthetic Dataset for 3D Object Detection and Pose Estimation".

Owner
JEONG HYEONJIN
Research Interest : 3D Computer Vision (3D Multiple Object Tracking, 3D Reconstruction, Multi-View Image Geometry, 3D Human Motion Recognition, Sensor Fusion)
JEONG HYEONJIN
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022