General purpose Slater-Koster tight-binding code for electronic structure calculations

Overview

tight-binder

Introduction

General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code is yet to be finished: so far the modules include the strictly necessary routines to compute band structures without additional information. It is designed to allow band structure calculations of alloys up to two atomic species (provided one gives the corresponding SK amplitudes).

The idea behind the program is to allow calculations simply using the configuration file, without any need to fiddle with the code (although that option is always available). Some examples are provided (cube.txt, chain.txt) which show the parameters needed to run a simulation.

  • Last Update: Added spin-orbit coupling up to d orbitals

Installation

Usage of a virtual environment is recommended to avoid conflicts, specially since this package is still in development so it will experiment changes periodically.

  • From within the root folder of the repository, install the required packages:
$ cd {path}/tightbinder
$ pip install -r requirements.txt
  • Then install the tightbinder package
$ pip install .
  • You can use the application from within the repository, using the bin/app.py program in the following fashion:
$ python bin/app.py {config_file} 

Or since the library is installed, create your own scripts. For now, usage of the app.py program is advised.

Documentation

To generate the documentation, you must have installed GNU Make previously. To do so, simply $ cd docs/source and run $ make html. The documentation will then be created in docs/build/html.

Examples

The folder examples/ contains some basic cases to test that the program is working correcly.

  • One-dimensional chain (1 orbital): To run the example do $ python bin/app.py examples/chain.txt

This model is analytically solvable, its band dispersion relation is:

alt text

  • Bi(111) bilayer: To run it: $python bin/app.py examples/bi(111).txt In this case we use a four-orbital model (s, px, py and pz). Since we are modelling a real material, we need to input some valid Slater-Koster coefficients as well as the spin-orbit coupling amplitude. These are given in [1, 2].

The resulting band structure is:

alt text

Bi(111) bilayers are known to be topological insulators. To confirm this, one can use the routines provided in the topology module to calculate its invariant.

To do so, we can compute its hybrid Wannier centre flow, which results to be:

alt text

The crossing of the red dots indicates that the material is topological. For more complex cases, there is a routine implemented to automatize the counting of crossings, based on [3].

Workroad

The future updates will be:

  • hamiltonian.py: Module for inititializing and solving the Hamiltonian of the system given in the config. file
  • topology.py: This module will include routines for computing topological invariants of the system. (19/12/20) Z2 invariant routines added. It remains to fix routines related to Chern invariant.
  • disorder.py: Module with routines to introduce disorder in the system such as vacancies or impurities

A working GUI might be done in the future

References

Owner
PhD student in Physics
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022