CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

Related tags

Deep LearningCLUES
Overview

License: MIT

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

This repo contains the data and source code for baseline models in the NeurIPS 2021 benchmark paper for Constrained Language Understanding Evaluation Standard (CLUES) under MIT License.

Overview

The benchmark data is located in the data directory. We also release source codes for two fine-tuning strategies on CLUES, one with classic fine-tuning and the other with prompt-based fine-tuning.

Classic finetuning

Setup Environment

  1. > git clone [email protected]:microsoft/CLUES.git
  2. > git clone [email protected]:namisan/mt-dnn.git
  3. > cp -rf CLUES/classic_finetuning/ mt-dnn/
  4. > cd mt-dnn/

Run Experiments

  1. Preprocess data
    > bash run_clues_data_process.sh

  2. Train/test Models
    > bash run_clues_batch.sh

Prompt fine-tuning

Setup

  1. cd prompt_finetuning
  2. Run sh setup.sh to automatically fetch dependency codebase and apply our patch for CLUES

Run Experiments

All prompt-based funetuning baselines run commands are in experiments.sh, simple run by sh experiments.sh

Leaderboard

Here we maintain a leaderboard, allowing researchers to submit their results as entries.

Submission Instructions

  • Each submission must be submitted as a pull request modifying the markdown file underlying the leaderboard.
  • The submission must attach an accompanying public paper and public source code for reproducing their results on our dataset.
  • A submission can be toward any subset of tasks in our benchmark, or toward the aggregate leaderboard.
  • For any task targeted by the submission, we require evaluation on (1) 10, 20, and 30 shots, and (2) all 5 splits of the corresponding dataset and a report of their mean and standard deviation.
  • Each leaderboard will be sorted by the 30-shot mean S1 score (where S1 score is a variant of F1 score defined in our paper).
  • The submission should not use data from the 4 other splits during few-shot finetuning of any 1 split, either as extra training set or as validation set for hyperparameter tuning.
  • However, we allow external data, labeled or unlabeled, to be used for such purposes. Each submission using external data must mark the corresponding columns "external labeled" and/or "external unlabeled". Note, in this context, "external data" refers to data used after pretraining (e.g., for task-specific tuning); in particular, methods using existing pretrained models only, without extra data, should not mark either column. For obvious reasons, models cannot be trained on the original labeled datasets from where we sampled the few-shot CLUES data.
  • In the table entry, the submission should include a method name and a citation, hyperlinking to their publicly released source code reproducing the results. See the last entry of the table below for an example.

Abbreviations

  • FT = (classic) finetuning
  • PT = prompt based tuning
  • ICL = in-context learning, in the style of GPT-3
  • μ±σ = mean μ and standard deviation σ across our 5 splits. Aggregate standard deviation is calculated using the sum-of-variance formula from individual tasks' standard deviations.

Benchmarking CLUES for Aggregate 30-shot Evaluation

Shots (K=30) external labeled external unlabeled Average ▼ SST-2 MNLI CoNLL03 WikiANN SQuAD-v2 ReCoRD
Human N N 81.4 83.7 69.4 87.4 82.6 73.5 91.9
T5-Large-770M-FT N N 43.1±6.7 52.3±2.9 36.8±3.8 51.2±0.1 62.4±0.6 43.7±2.7 12±3.8
BERT-Large-336M-FT N N 42.1±7.8 55.4±2.5 33.3±1.4 51.3±0 62.5±0.6 35.3±6.4 14.9±3.4
BERT-Base-110M-FT N N 41.5±9.2 53.6±5.5 35.4±3.2 51.3±0 62.8±0 32.6±5.8 13.1±3.3
DeBERTa-Large-400M-FT N N 40.1±17.8 47.7±9.0 26.7±11 48.2±2.9 58.3±6.2 38.7±7.4 21.1±3.6
RoBERTa-Large-355M-FT N N 40.0±10.6 53.2±5.6 34.0±1.1 44.7±2.6 48.4±6.7 43.5±4.4 16±2.8
RoBERTa-Large-355M-PT N N 90.2±1.8 61.6±3.5
DeBERTa-Large-400M-PT N N 88.4±3.3 62.9±3.1
BERT-Large-336M-PT N N 82.7±4.1 45.3±2.0
GPT3-175B-ICL N N 91.0±1.6 33.2±0.2
BERT-Base-110M-PT N N 79.4±5.6 42.5±3.2
LiST (Wang et al.) N Y 91.3 ±0.7 67.9±3.0
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Individual Task Performance over Multiple Shots

SST-2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
GPT-3 (175B) ICL N N 85.9±3.7 92.0±0.7 91.0±1.6 -
RoBERTa-Large PT N N 88.8±3.9 89.0±1.1 90.2±1.8 93.8
DeBERTa-Large PT N N 83.4±5.3 87.8±3.5 88.4±3.3 91.9
Human N N 79.8 83 83.7 -
BERT-Large PT N N 63.2±11.3 78.2±9.9 82.7±4.1 91
BERT-Base PT N N 63.9±10.0 76.7±6.6 79.4±5.6 91.9
BERT-Large FT N N 46.3±5.5 55.5±3.4 55.4±2.5 99.1
BERT-Base FT N N 46.2±5.6 54.0±2.8 53.6±5.5 98.1
RoBERTa-Large FT N N 38.4±21.7 52.3±5.6 53.2±5.6 98.6
T5-Large FT N N 51.2±1.8 53.4±3.2 52.3±2.9 97.6
DeBERTa-Large FT N N 43.0±11.9 40.8±22.6 47.7±9.0 100
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 -

MNLI

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N Y 78.1 78.6 69.4 -
LiST (wang et al.) N N 60.5±8.3 67.2±4.5 67.9±3.0 -
DeBERTa-Large PT N N 44.5±8.2 60.7±5.3 62.9±3.1 88.1
RoBERTa-Large PT N N 57.7±3.6 58.6±2.9 61.6±3.5 87.1
BERT-Large PT N N 41.7±1.0 43.7±2.1 45.3±2.0 81.9
BERT-Base PT N N 40.4±1.8 42.1±4.4 42.5±3.2 81
T5-Large FT N N 39.8±3.3 37.9±4.3 36.8±3.8 85.9
BERT-Base FT N N 37.0±5.2 35.2±2.7 35.4±3.2 81.6
RoBERTa-Large FT N N 34.3±2.8 33.4±0.9 34.0±1.1 85.5
BERT-Large FT N N 33.7±0.4 28.2±14.8 33.3±1.4 80.9
GPT-3 (175B) ICL N N 33.5±0.7 33.1±0.3 33.2±0.2 -
DeBERTa-Large FT N N 27.4±14.1 33.6±2.5 26.7±11.0 87.6

CoNLL03

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 87.7 89.7 87.4 -
BERT-Base FT N N 51.3±0 51.3±0 51.3±0 -
BERT-Large FT N N 51.3±0 51.3±0 51.3±0 89.3
T5-Large FT N N 46.3±6.9 50.0±0.7 51.2±0.1 92.2
DeBERTa-Large FT N N 50.1±1.2 47.8±2.5 48.2±2.9 93.6
RoBERTa-Large FT N N 50.8±0.5 44.6±5.1 44.7±2.6 93.2

WikiANN

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 81.4 83.5 82.6 -
BERT-Base FT N N 62.8±0 62.8±0 62.8±0 88.8
BERT-Large FT N N 62.8±0 62.6±0.4 62.5±0.6 91
T5-Large FT N N 61.7±0.7 62.1±0.2 62.4±0.6 87.4
DeBERTa-Large FT N N 58.5±3.3 57.9±5.8 58.3±6.2 91.1
RoBERTa-Large FT N N 58.5±8.8 56.9±3.4 48.4±6.7 91.2

SQuAD v2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 71.9 76.4 73.5 -
T5-Large FT N N 43.6±3.5 28.7±13.0 43.7±2.7 87.2
RoBERTa-Large FT N N 38.1±7.2 40.1±6.4 43.5±4.4 89.4
DeBERTa-Large FT N N 41.4±7.3 44.4±4.5 38.7±7.4 90
BERT-Large FT N N 42.3±5.6 35.8±9.7 35.3±6.4 81.8
BERT-Base FT N N 46.0±2.4 34.9±9.0 32.6±5.8 76.3

ReCoRD

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 94.1 94.2 91.9 -
DeBERTa-Large FT N N 15.7±5.0 16.8±5.7 21.1±3.6 80.7
RoBERTa-Large FT N N 12.0±1.9 9.9±6.2 16.0±2.8 80.3
BERT-Large FT N N 9.9±5.2 11.8±4.9 14.9±3.4 66
BERT-Base FT N N 10.3±1.8 11.7±2.4 13.1±3.3 54.4
T5-Large FT N N 11.9±2.7 11.7±1.5 12.0±3.8 77.3

How do I cite CLUES?

@article{cluesteam2021,
  title={Few-Shot Learning Evaluation in Natural Language Understanding},
  author={Mukherjee, Subhabrata and Liu, Xiaodong and Zheng, Guoqing and Hosseini, Saghar and Cheng, Hao and Yang, Greg and Meek, Christopher and Awadallah, Ahmed Hassan and Gao, Jianfeng},
  year={2021}
}

Acknowledgments

MT-DNN: https://github.com/namisan/mt-dnn
LM-BFF: https://github.com/princeton-nlp/LM-BFF

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023