Dynamic Environments with Deformable Objects (DEDO)

Related tags

Deep Learningdedo
Overview

DEDO  - Dynamic Environments with Deformable Objects

DEDO - Dynamic Environments with Deformable Objects

DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed for researchers in the machine learning, reinforcement learning, robotics and computer vision communities. The suite provides a set of every day tasks that involve deformables, such as hanging cloth, dressing a person, and buttoning buttons. We provide examples for integrating two popular reinforcement learning libraries: StableBaselines3 and RLlib. We also provide reference implementaionts for training a various Variational Autoencoder variants with our environment. DEDO is easy to set up and has few dependencies, it is highly parallelizable and supports a wide range of customizations: loading custom objects and textures, adjusting material properties.

<<<<<<< HEAD

Note: updates for this repo are in progress (until the presentation at NeurIPS2021 in mid-December).

@inproceedings{dedo2021,
  title={Dynamic Environments with Deformable Objects},
  author={Rika Antonova and Peiyang Shi and Hang Yin and Zehang Weng and Danica Kragic},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track},
  year={2021},
}

d221b6994e8189457ea6f0513e6807824d11bb29 Table of Contents:
Installation
GettingStarted
Tasks
Use with RL
Use with VAE
Customization

Please refer to Wiki for the full documentation

Installation

Optional initial step: create a new conda environment with conda create --name dedo python=3.7 and activate it with conda activate dedo. Conda is not strictly needed, alternatives like virtualenv can be used; a direct install without using virtual environments is ok as well.

git clone https://github.com/contactrika/dedo
cd dedo
pip install numpy  # important: Nessasary for compiling numpy-enabled PyBullet
pip install -e .

Python3.7 is recommended as we have encountered that on some OS + CPU combo, PyBullet could not be compiled with Numpy enabled in Pip Python 3.8. To enable recording/logging videos install ffmpeg:

sudo apt-get install ffmpeg

See more in Installation Guide in wiki

Getting started

To get started, one can run one of the following commands to visualize the tasks through a hard-coded policy.

python -m dedo.demo --env=HangGarment-v1 --viz --debug
  • dedo.demo is the demo module
  • --env=HangGarment-v1 specifies the environment
  • --viz enables the GUI
  • ---debug outputs additional information in the console
  • --cam_resolution 400 specifies the size of the output window

See more in Usage-guide

Tasks

See more in Task Overview

We provide a set of 10 tasks involving deformable objects, most tasks contains 5 handmade deformable objects. There are also two procedurally generated tasks, ButtonProc and HangProcCloth, in which the deformable objects are procedurally generated. Furthermore, to improve generalzation, the v0 of each task will randomizes textures and meshes.

All tasks have -v1 and -v2 with a particular choice of meshes and textures that is not randomized. Most tasks have versions up to -v5 with additional mesh and texture variations.

Tasks with procedurally generated cloth (ButtonProc and HangProcCloth) generate random cloth objects for all versions (but randomize textures only in v0).

HangBag

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangBag-v1 --viz

HangBag-v0: selects one of 108 bag meshes; randomized textures

HangBag-v[1-3]: three bag versions with textures shown below:

images/imgs/hang_bags_annotated.jpg

HangGarment

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangGarment-v1 --viz

HangGarment-v0: hang garment with randomized textures (a few examples below):

HangGarment-v[1-5]: 5 apron meshes and texture combos shown below:

images/imgs/hang_garments_5.jpg

HangGarment-v[6-10]: 5 shirt meshes and texture combos shown below:

images/imgs/hang_shirts_5.jpg

HangProcCloth

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangProcCloth-v1 --viz

HangProcCloth-v0: random textures, procedurally generated cloth with 1 and 2 holes.

HangProcCloth-v[1-2]: same, but with either 1 or 2 holes

images/imgs/hang_proc_cloth.jpg

Buttoning

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Button-v1 --viz

ButtonProc-v0: randomized textures and procedurally generated cloth with 2 holes, randomized hole/button positions.

ButtonProc-v[1-2]: procedurally generated cloth, 1 or two holes.

images/imgs/button_proc.jpg

Button-v0: randomized textures, but fixed cloth and button positions.

Button-v1: fixed cloth and button positions with one texture (see image below):

images/imgs/button.jpg

Hoop

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Hoop-v1 --viz

Hoop-v0: randomized textures Hoop-v1: pre-selected textures images/imgs/hoop_and_lasso.jpg

Lasso

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Lasso-v1 --viz

Lasso-v0: randomized textures Lasso-v1: pre-selected textures

DressBag

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=DressBag-v1 --viz

DressBag-v0, DressBag-v[1-5]: demo for -v1 shown below

images/imgs/dress_bag.jpg

Visualizations of the 5 backpack mesh and texture variants for DressBag-v[1-5]:

images/imgs/backpack_meshes.jpg

DressGarment

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=DressGarment-v1 --viz

DressGarment-v0, DressGarment-v[1-5]: demo for -v1 shown below

images/imgs/dress_garment.jpg

Mask

python -m dedo.demo_preset --env=Mask-v1 --viz

Mask-v0, Mask-v[1-5]: a few texture variants shown below: images/imgs/dress_garment.jpg

RL Examples

dedo/run_rl_sb3.py gives an example of how to train an RL algorithm from Stable Baselines 3:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

dedo/run_rllib.py gives an example of how to train an RL algorithm using RLLib:

python -m dedo.run_rllib --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

For documentation, please refer to Arguments Reference page in wiki

To launch the Tensorboard:

tensorboard --logdir=/tmp/dedo --bind_all --port 6006 \
  --samples_per_plugin images=1000

SVAE Examples

dedo/run_svae.py gives an example of how to train various flavors of VAE:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

dedo/run_rllib.py gives an example of how to train an RL algorithm from Stable Baselines 3:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

To launch the Tensorboard:

tensorboard --logdir=/tmp/dedo --bind_all --port 6006 \
  --samples_per_plugin images=1000

Customization

To load custom object you would first have to fill an entry in DEFORM_INFO in task_info.py. The key should the the .obj file path relative to data/:

DEFORM_INFO = {
...
    # An example of info for a custom item.
    'bags/custom.obj': {
        'deform_init_pos': [0, 0.47, 0.47],
        'deform_init_ori': [np.pi/2, 0, 0],
        'deform_scale': 0.1,
        'deform_elastic_stiffness': 1.0,
        'deform_bending_stiffness': 1.0,
        'deform_true_loop_vertices': [
            [0, 1, 2, 3]  # placeholder, since we don't know the true loops
        ]
    },

Then you can use --override_deform_obj flag:

python -m dedo.demo --env=HangBag-v0 --cam_resolution 200 --viz --debug \
    --override_deform_obj bags/custom.obj

For items not in DEFORM_DICT you will need to specify sensible defaults, for example:

python -m dedo.demo --env=HangGarment-v0 --viz --debug \
  --override_deform_obj=generated_cloth/generated_cloth.obj \
  --deform_init_pos 0.02 0.41 0.63 --deform_init_ori 0 0 1.5708

Example of scaling up the custom mesh objects:

python -m dedo.demo --env=HangGarment-v0 --viz --debug \
   --override_deform_obj=generated_cloth/generated_cloth.obj \
   --deform_init_pos 0.02 0.41 0.55 --deform_init_ori 0 0 1.5708 \
   --deform_scale 2.0 --anchor_init_pos -0.10 0.40 0.70 \
   --other_anchor_init_pos 0.10 0.40 0.70

See more in Customization Wiki

Additonal Assets

BGarment dataset is adapter from Berkeley Garment Library

Sewing dataset is adapted from Generating Datasets of 3D Garments with Sewing Patterns

You might also like...
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

PyTorch implementation of Deformable Convolution
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

MoCoPnet - Deformable 3D Convolution for Video Super-Resolution
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

Selfplay In MultiPlayer Environments
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Comments
  • Adding Point Cloud Observations to DEDO

    Adding Point Cloud Observations to DEDO

    This PR adds point cloud (pcd) rendering to the DEDO. Summary of changes:

    • Point cloud data extracted from sim environment based on a set of object ids that we want to retain
    • Depth cameras are instantiated using a cameraConfig class, which abstracts out the various camera configurations needed.
    • The cameraConfig class loads camera configs from JSON (for easy loading & sharing of camera configs), or directly by instantiation (if you know how you want to dynamically set your camera).
    • Some sample JSON camera configs are provided (4 total)
    • Unprojecting from depth image to point cloud is vectorized, so rendering point cloud observations adds negligible runtime to overall pipeline process time (should benchmark this?).
    • The original deform_env had to be adjusted so that the deformable object would have ID 0. For some reason, pybullet only renders the deformable if this is true.

    Known issues:

    • The floor has disappeared from the visual.
    opened by edwin-pan 3
  • Enables base motion on fetch robot with 1 anchor

    Enables base motion on fetch robot with 1 anchor

    Changes allow the fetch robot to move towards the hanger with an apron.

    Google Doc that explains the changes: https://docs.google.com/document/d/18_9K29K4N6atvtqUxIqKhq6Bt0YSPhQgfWldUWdyvLM/edit?usp=sharing

    There are some TODO's: related to removing some hardcoded values and improving the results

    opened by Nishantjannu 0
Releases(v0.1)
  • v0.1(Jan 11, 2022)

    This is the initial release of the code and functionality presented at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks in December 2021.

    Source code(tar.gz)
    Source code(zip)
Owner
Rika
Sim-to-real with Reinforcement Learning, Variational Inference, Bayesian Optimization
Rika
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023