PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Related tags

Deep Learningflowgmm
Overview

Flow Gaussian Mixture Model (FlowGMM)

This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Semi-Supervised Learning with Normalizing Flows

by Pavel Izmailov, Polina Kirichenko, Marc Finzi and Andrew Gordon Wilson.

Introduction

Normalizing flows transform a latent distribution through an invertible neural network for a flexible and pleasingly simple approach to generative modelling, while preserving an exact likelihood. In this paper, we introduce FlowGMM (Flow Gaussian Mixture Model), an approach to semi-supervised learning with normalizing flows, by modelling the density in the latent space as a Gaussian mixture, with each mixture component corresponding to a class represented in the labelled data. FlowGMM is distinct in its simplicity, unified treatment of labelled and unlabelled data with an exact likelihood, interpretability, and broad applicability beyond image data.

We show promising results on a wide range of semi-supervised classification problems, including AG-News and Yahoo Answers text data, UCI tabular data, and image datasets (MNIST, CIFAR-10 and SVHN).

Screenshot from 2019-12-29 19-32-26

Please cite our work if you find it useful:

@article{izmailov2019semi,
  title={Semi-Supervised Learning with Normalizing Flows},
  author={Izmailov, Pavel and Kirichenko, Polina and Finzi, Marc and Wilson, Andrew Gordon},
  journal={arXiv preprint arXiv:1912.13025},
  year={2019}
}

Installation

To run the scripts you will need to clone the repo and install it locally. You can use the commands below.

git clone https://github.com/izmailovpavel/flowgmm.git
cd flowgmm
pip install -e .

Dependencies

We have the following dependencies for FlowGMM that must be installed prior to install to FlowGMM

We provide the scripts and example commands to reproduce the experiments from the paper.

Synthetic Datasets

The experiments on synthetic data are implemented in this ipython notebook. We additionaly provide another ipython notebook applying FlowGMM to labeled data only.

Tabular Datasets

The tabular datasets will be download and preprocessed automatically the first time they are needed. Using the commands below you can reproduce the performance from the table.

AGNEWS YAHOO HEPMASS MINIBOONE
MLP 77.5 55.7 82.2 80.4
Pi Model 80.2 56.3 87.9 80.8
FlowGMM 82.1 57.9 88.5 81.9

Text Classification (Updated)

Train FlowGMM on AG-News (200 labeled examples):

python experiments/train_flows/flowgmm_tabular_new.py --trainer_config "{'unlab_weight':.6}" --net_config "{'k':1024,'coupling_layers':7,'nperlayer':1}" --network RealNVPTabularWPrior --trainer SemiFlow --num_epochs 100 --dataset AG_News --lr 3e-4 --train 200

Train FlowGMM on YAHOO Answers (800 labeled examples):

python experiments/train_flows/flowgmm_tabular_new.py --trainer_config "{'unlab_weight':.2}" --net_config "{'k':1024,'coupling_layers':7,'nperlayer':1}" --network RealNVPTabularWPrior --trainer SemiFlow --num_epochs 200 --dataset YAHOO --lr 3e-4 --train 800

UCI Data

Train FlowGMM on MINIBOONE (20 labeled examples):

python experiments/train_flows/flowgmm_tabular_new.py --trainer_config "{'unlab_weight':3.}"\
 --net_config "{'k':256,'coupling_layers':10,'nperlayer':1}" --network RealNVPTabularWPrior \
 --trainer SemiFlow --num_epochs 300 --dataset MINIBOONE --lr 3e-4

Train FlowGMM on HEPMASS (20 labeled examples):

python experiments/train_flows/flowgmm_tabular_new.py --trainer_config "{'unlab_weight':10}"\
 --net_config "{'k':256,'coupling_layers':10,'nperlayer':1}" \
 --network RealNVPTabularWPrior --trainer SemiFlow --num_epochs 15 --dataset HEPMASS

Note that for on the low dimensional tabular data the FlowGMM models are quite sensitive to initialization. You may want to run the script a couple of times in case the model does not recover from a bad init.

The training script for the UCI dataset will automatically download the relevant MINIBOONE or HEPMASS datasets and unpack them into ~/datasets/UCI/., but for reference they come from here and here. We follow the preprocessing (where sensible) from Masked Autoregressive Flow for Density Estimation.

Baselines

Training the 3 Layer NN + Dropout on

YAHOO Answers: python experiments/train_flows/flowgmm_tabular_new.py --lr=1e-3 --dataset YAHOO --num_epochs 1000 --train 800

AG-NEWS: python experiments/train_flows/flowgmm_tabular_new.py --lr 1e-4 --dataset AG_News --num_epochs 1000 --train 200

MINIBOONE: python experiments/train_flows/flowgmm_tabular_new.py --lr 1e-4 --dataset MINIBOONE --num_epochs 500

HEPMASS: python experiments/train_flows/flowgmm_tabular_new.py --lr 1e-4 --dataset HEPMASS --num_epochs 500

Training the Pi Model on

YAHOO Answers: python flowgmm_tabular_new.py --lr=1e-3 --dataset YAHOO --num_epochs 300 --train 800 --trainer PiModel --trainer_config "{'cons_weight':.3}"

AG-NEWS: python experiments/train_flows/flowgmm_tabular_new.py --lr 1e-3 --dataset AG_News --num_epochs 100 --train 200 --trainer PiModel --trainer_config "{'cons_weight':30}"

MINIBOONE: python flowgmm_tabular_new.py --lr 3e-4 --dataset MINIBOONE --trainer PiModel --trainer_config "{'cons_weight':30}" --num_epochs 10

HEPMASS: python experiments/train_flows/flowgmm_tabular_new.py --trainer PiModel --num_epochs 10 --dataset MINIBOONE --trainer_config "{'cons_weight':3}" --lr 1e-4

The notebook here can be used to run the kNN, Logistic Regression, and Label Spreading baselines once the data has already been downloaded by the previous scripts or if it was downloaded manually.

Image Classification

To run experiments with FlowGMM on image classification problems you first need to download and prepare the data. To do so, run the following scripts:

./data/bin/prepare_cifar10.sh
./data/bin/prepare_mnist.sh
./data/bin/prepare_svhn.sh

To run FlowGMM, you can use the following script

python3 experiments/train_flows/train_semisup_cons.py \
  --dataset=<DATASET> \
  --data_path=<DATAPATH> \
  --label_path=<LABELPATH> \
  --logdir=<LOGDIR> \
  --ckptdir=<CKPTDIR> \
  --save_freq=<SAVEFREQ> \ 
  --num_epochs=<EPOCHS> \
  --label_weight=<LABELWEIGHT> \
  --consistency_weight=<CONSISTENCYWEIGHT> \
  --consistency_rampup=<CONSISTENCYRAMPUP> \
  --lr=<LR> \
  --eval_freq=<EVALFREQ> \

Parameters:

  • DATASET — dataset name [MNIST/CIFAR10/SVHN]
  • DATAPATH — path to the directory containing data; if you used the data preparation scripts, you can use e.g. data/images/mnist as DATAPATH
  • LABELPATH — path to the label split generated by the data preparation scripts; this can be e.g. data/labels/mnist/1000_balanced_labels/10.npz or data/labels/cifar10/1000_balanced_labels/10.txt.
  • LOGDIR — directory where tensorboard logs will be stored
  • CKPTDIR — directory where checkpoints will be stored
  • SAVEFREQ — frequency of saving checkpoints in epochs
  • EPOCHS — number of training epochs (passes through labeled data)
  • LABELWEIGHT — weight of cross-entropy loss term (default: 1.)
  • CONSISTENCYWEIGHT — weight of consistency loss term (default: 1.)
  • CONSISTENCYRAMPUP — length of consistency ramp-up period in epochs (default: 1); consistency weight is linearly increasing from 0. to CONSISTENCYWEIGHT in the first CONSISTENCYRAMPUP epochs of training
  • LR — learning rate (default: 1e-3)
  • EVALFREQ — number of epochs between evaluation (default: 1)

Examples:

# MNIST, 100 labeled datapoints
python3 experiments/train_flows/train_semisup_cons.py --dataset=MNIST --data_path=data/images/mnist/ \
  --label_path=data/labels/mnist/100_balanced_labels/10.npz --logdir=<LOGDIR> --ckptdir=<CKPTDIR> \
  --save_freq=5000 --num_epochs=30001 --label_weight=3 --consistency_weight=1. --consistency_rampup=1000 \
  --lr=1e-5 --eval_freq=100 
  
# CIFAR-10, 4000 labeled datapoints
python3 experiments/train_flows/train_semisup_cons.py --dataset=CIFAR10 --data_path=data/images/cifar/cifar10/by-image/ \
  --label_path=data/labels/cifar10/4000_balanced_labels/10.txt --logdir=<LOGDIR> --ckptdir=<CKPTDIR> \ 
  --save_freq=500 --num_epochs=1501 --label_weight=3 --consistency_weight=1. --consistency_rampup=100 \
  --lr=1e-4 --eval_freq=50

References

Owner
Pavel Izmailov
Pavel Izmailov
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
22 Oct 14, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022