PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Related tags

Deep Learningflowgmm
Overview

Flow Gaussian Mixture Model (FlowGMM)

This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Semi-Supervised Learning with Normalizing Flows

by Pavel Izmailov, Polina Kirichenko, Marc Finzi and Andrew Gordon Wilson.

Introduction

Normalizing flows transform a latent distribution through an invertible neural network for a flexible and pleasingly simple approach to generative modelling, while preserving an exact likelihood. In this paper, we introduce FlowGMM (Flow Gaussian Mixture Model), an approach to semi-supervised learning with normalizing flows, by modelling the density in the latent space as a Gaussian mixture, with each mixture component corresponding to a class represented in the labelled data. FlowGMM is distinct in its simplicity, unified treatment of labelled and unlabelled data with an exact likelihood, interpretability, and broad applicability beyond image data.

We show promising results on a wide range of semi-supervised classification problems, including AG-News and Yahoo Answers text data, UCI tabular data, and image datasets (MNIST, CIFAR-10 and SVHN).

Screenshot from 2019-12-29 19-32-26

Please cite our work if you find it useful:

@article{izmailov2019semi,
  title={Semi-Supervised Learning with Normalizing Flows},
  author={Izmailov, Pavel and Kirichenko, Polina and Finzi, Marc and Wilson, Andrew Gordon},
  journal={arXiv preprint arXiv:1912.13025},
  year={2019}
}

Installation

To run the scripts you will need to clone the repo and install it locally. You can use the commands below.

git clone https://github.com/izmailovpavel/flowgmm.git
cd flowgmm
pip install -e .

Dependencies

We have the following dependencies for FlowGMM that must be installed prior to install to FlowGMM

We provide the scripts and example commands to reproduce the experiments from the paper.

Synthetic Datasets

The experiments on synthetic data are implemented in this ipython notebook. We additionaly provide another ipython notebook applying FlowGMM to labeled data only.

Tabular Datasets

The tabular datasets will be download and preprocessed automatically the first time they are needed. Using the commands below you can reproduce the performance from the table.

AGNEWS YAHOO HEPMASS MINIBOONE
MLP 77.5 55.7 82.2 80.4
Pi Model 80.2 56.3 87.9 80.8
FlowGMM 82.1 57.9 88.5 81.9

Text Classification (Updated)

Train FlowGMM on AG-News (200 labeled examples):

python experiments/train_flows/flowgmm_tabular_new.py --trainer_config "{'unlab_weight':.6}" --net_config "{'k':1024,'coupling_layers':7,'nperlayer':1}" --network RealNVPTabularWPrior --trainer SemiFlow --num_epochs 100 --dataset AG_News --lr 3e-4 --train 200

Train FlowGMM on YAHOO Answers (800 labeled examples):

python experiments/train_flows/flowgmm_tabular_new.py --trainer_config "{'unlab_weight':.2}" --net_config "{'k':1024,'coupling_layers':7,'nperlayer':1}" --network RealNVPTabularWPrior --trainer SemiFlow --num_epochs 200 --dataset YAHOO --lr 3e-4 --train 800

UCI Data

Train FlowGMM on MINIBOONE (20 labeled examples):

python experiments/train_flows/flowgmm_tabular_new.py --trainer_config "{'unlab_weight':3.}"\
 --net_config "{'k':256,'coupling_layers':10,'nperlayer':1}" --network RealNVPTabularWPrior \
 --trainer SemiFlow --num_epochs 300 --dataset MINIBOONE --lr 3e-4

Train FlowGMM on HEPMASS (20 labeled examples):

python experiments/train_flows/flowgmm_tabular_new.py --trainer_config "{'unlab_weight':10}"\
 --net_config "{'k':256,'coupling_layers':10,'nperlayer':1}" \
 --network RealNVPTabularWPrior --trainer SemiFlow --num_epochs 15 --dataset HEPMASS

Note that for on the low dimensional tabular data the FlowGMM models are quite sensitive to initialization. You may want to run the script a couple of times in case the model does not recover from a bad init.

The training script for the UCI dataset will automatically download the relevant MINIBOONE or HEPMASS datasets and unpack them into ~/datasets/UCI/., but for reference they come from here and here. We follow the preprocessing (where sensible) from Masked Autoregressive Flow for Density Estimation.

Baselines

Training the 3 Layer NN + Dropout on

YAHOO Answers: python experiments/train_flows/flowgmm_tabular_new.py --lr=1e-3 --dataset YAHOO --num_epochs 1000 --train 800

AG-NEWS: python experiments/train_flows/flowgmm_tabular_new.py --lr 1e-4 --dataset AG_News --num_epochs 1000 --train 200

MINIBOONE: python experiments/train_flows/flowgmm_tabular_new.py --lr 1e-4 --dataset MINIBOONE --num_epochs 500

HEPMASS: python experiments/train_flows/flowgmm_tabular_new.py --lr 1e-4 --dataset HEPMASS --num_epochs 500

Training the Pi Model on

YAHOO Answers: python flowgmm_tabular_new.py --lr=1e-3 --dataset YAHOO --num_epochs 300 --train 800 --trainer PiModel --trainer_config "{'cons_weight':.3}"

AG-NEWS: python experiments/train_flows/flowgmm_tabular_new.py --lr 1e-3 --dataset AG_News --num_epochs 100 --train 200 --trainer PiModel --trainer_config "{'cons_weight':30}"

MINIBOONE: python flowgmm_tabular_new.py --lr 3e-4 --dataset MINIBOONE --trainer PiModel --trainer_config "{'cons_weight':30}" --num_epochs 10

HEPMASS: python experiments/train_flows/flowgmm_tabular_new.py --trainer PiModel --num_epochs 10 --dataset MINIBOONE --trainer_config "{'cons_weight':3}" --lr 1e-4

The notebook here can be used to run the kNN, Logistic Regression, and Label Spreading baselines once the data has already been downloaded by the previous scripts or if it was downloaded manually.

Image Classification

To run experiments with FlowGMM on image classification problems you first need to download and prepare the data. To do so, run the following scripts:

./data/bin/prepare_cifar10.sh
./data/bin/prepare_mnist.sh
./data/bin/prepare_svhn.sh

To run FlowGMM, you can use the following script

python3 experiments/train_flows/train_semisup_cons.py \
  --dataset=<DATASET> \
  --data_path=<DATAPATH> \
  --label_path=<LABELPATH> \
  --logdir=<LOGDIR> \
  --ckptdir=<CKPTDIR> \
  --save_freq=<SAVEFREQ> \ 
  --num_epochs=<EPOCHS> \
  --label_weight=<LABELWEIGHT> \
  --consistency_weight=<CONSISTENCYWEIGHT> \
  --consistency_rampup=<CONSISTENCYRAMPUP> \
  --lr=<LR> \
  --eval_freq=<EVALFREQ> \

Parameters:

  • DATASET — dataset name [MNIST/CIFAR10/SVHN]
  • DATAPATH — path to the directory containing data; if you used the data preparation scripts, you can use e.g. data/images/mnist as DATAPATH
  • LABELPATH — path to the label split generated by the data preparation scripts; this can be e.g. data/labels/mnist/1000_balanced_labels/10.npz or data/labels/cifar10/1000_balanced_labels/10.txt.
  • LOGDIR — directory where tensorboard logs will be stored
  • CKPTDIR — directory where checkpoints will be stored
  • SAVEFREQ — frequency of saving checkpoints in epochs
  • EPOCHS — number of training epochs (passes through labeled data)
  • LABELWEIGHT — weight of cross-entropy loss term (default: 1.)
  • CONSISTENCYWEIGHT — weight of consistency loss term (default: 1.)
  • CONSISTENCYRAMPUP — length of consistency ramp-up period in epochs (default: 1); consistency weight is linearly increasing from 0. to CONSISTENCYWEIGHT in the first CONSISTENCYRAMPUP epochs of training
  • LR — learning rate (default: 1e-3)
  • EVALFREQ — number of epochs between evaluation (default: 1)

Examples:

# MNIST, 100 labeled datapoints
python3 experiments/train_flows/train_semisup_cons.py --dataset=MNIST --data_path=data/images/mnist/ \
  --label_path=data/labels/mnist/100_balanced_labels/10.npz --logdir=<LOGDIR> --ckptdir=<CKPTDIR> \
  --save_freq=5000 --num_epochs=30001 --label_weight=3 --consistency_weight=1. --consistency_rampup=1000 \
  --lr=1e-5 --eval_freq=100 
  
# CIFAR-10, 4000 labeled datapoints
python3 experiments/train_flows/train_semisup_cons.py --dataset=CIFAR10 --data_path=data/images/cifar/cifar10/by-image/ \
  --label_path=data/labels/cifar10/4000_balanced_labels/10.txt --logdir=<LOGDIR> --ckptdir=<CKPTDIR> \ 
  --save_freq=500 --num_epochs=1501 --label_weight=3 --consistency_weight=1. --consistency_rampup=100 \
  --lr=1e-4 --eval_freq=50

References

Owner
Pavel Izmailov
Pavel Izmailov
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021