UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

Overview

UDP-Pose

This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Illustrating the performance of the proposed UDP

Top-Down

Results on MPII val dataset

Method--- Head Sho. Elb. Wri. Hip Kne. Ank. Mean Mean 0.1
HRNet32 97.1 95.9 90.3 86.5 89.1 87.1 83.3 90.3 37.7
+Dark 97.2 95.9 91.2 86.7 89.7 86.7 84.0 90.6 42.0
+UDP 97.4 96.0 91.0 86.5 89.1 86.6 83.3 90.4 42.1

Results on COCO val2017 with detector having human AP of 65.1 on COCO val2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR
pose_resnet_50 256x192 34.0M 8.90 71.3 89.9 78.9 68.3 77.4 76.9
+UDP 256x192 34.2M 8.96 72.9 90.0 80.2 69.7 79.3 78.2
pose_resnet_50 384x288 34.0M 20.0 73.2 90.7 79.9 69.4 80.1 78.2
+UDP 384x288 34.2M 20.1 74.0 90.3 80.0 70.2 81.0 79.0
pose_resnet_152 256x192 68.6M 15.7 72.9 90.6 80.8 69.9 79.0 78.3
+UDP 256x192 68.8M 15.8 74.3 90.9 81.6 71.2 80.6 79.6
pose_resnet_152 384x288 68.6M 35.6 75.3 91.0 82.3 71.9 82.0 80.4
+UDP 384x288 68.8M 35.7 76.2 90.8 83.0 72.8 82.9 81.2
pose_hrnet_w32 256x192 28.5M 7.10 75.6 91.9 83.0 72.2 81.6 80.5
+UDP 256x192 28.7M 7.16 76.8 91.9 83.7 73.1 83.3 81.6
+UDPv1 256x192 28.7M 7.16 77.2 91.6 84.2 73.7 83.7 82.5
+UDPv1+AID 256x192 28.7M 7.16 77.9 92.1 84.5 74.1 84.1 82.8
RSN18+UDP 256x192 - 2.5 74.7 - - - - -
pose_hrnet_w32 384x288 28.5M 16.0 76.7 91.9 83.6 73.2 83.2 81.6
+UDP 384x288 28.7M 16.1 77.8 91.7 84.5 74.2 84.3 82.4
pose_hrnet_w48 256x192 63.6M 14.6 75.9 91.9 83.5 72.6 82.1 80.9
+UDP 256x192 63.8M 14.7 77.2 91.8 83.7 73.8 83.7 82.0
pose_hrnet_w48 384x288 63.6M 32.9 77.1 91.8 83.8 73.5 83.5 81.8
+UDP 384x288 63.8M 33.0 77.8 92.0 84.3 74.2 84.5 82.5

Note:

  • Flip test is used.
  • Person detector has person AP of 65.1 on COCO val2017 dataset.
  • GFLOPs is for convolution and linear layers only.
  • UDPv1: v0:LOSS.KPD=4.0, v1:LOSS.KPD=3.5

Results on COCO test-dev with detector having human AP of 65.1 on COCO val2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR
pose_resnet_50 256x192 34.0M 8.90 70.2 90.9 78.3 67.1 75.9 75.8
+UDP 256x192 34.2M 8.96 71.7 91.1 79.6 68.6 77.5 77.2
pose_resnet_50 384x288 34.0M 20.0 71.3 91.0 78.5 67.3 77.9 76.6
+UDP 384x288 34.2M 20.1 72.5 91.1 79.7 68.8 79.1 77.9
pose_resnet_152 256x192 68.6M 15.7 71.9 91.4 80.1 68.9 77.4 77.5
+UDP 256x192 68.8M 15.8 72.9 91.6 80.9 70.0 78.5 78.4
pose_resnet_152 384x288 68.6M 35.6 73.8 91.7 81.2 70.3 80.0 79.1
+UDP 384x288 68.8M 35.7 74.7 91.8 82.1 71.5 80.8 80.0
pose_hrnet_w32 256x192 28.5M 7.10 73.5 92.2 82.0 70.4 79.0 79.0
+UDP 256x192 28.7M 7.16 75.2 92.4 82.9 72.0 80.8 80.4
pose_hrnet_w32 384x288 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1
+UDP 384x288 28.7M 16.1 76.1 92.5 83.5 72.8 82.0 81.3
pose_hrnet_w48 256x192 63.6M 14.6 74.3 92.4 82.6 71.2 79.6 79.7
+UDP 256x192 63.8M 14.7 75.7 92.4 83.3 72.5 81.4 80.9
pose_hrnet_w48 384x288 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5
+UDP 384x288 63.8M 33.0 76.5 92.7 84.0 73.0 82.4 81.6

Note:

  • Flip test is used.
  • Person detector has person AP of 65.1 on COCO val2017 dataset.
  • GFLOPs is for convolution and linear layers only.

Bottom-Up

HRNet

Arch P2I Input size Speed(task/s) AP Ap .5 AP .75 AP (M) AP (L) AR
HRNet(ori) T 512x512 - 64.4 - - 57.1 75.6 -
HRNet(mmpose) F 512x512 39.5 65.8 86.3 71.8 59.2 76.0 70.7
HRNet(mmpose) T 512x512 6.8 65.3 86.2 71.5 58.6 75.7 70.9
HRNet+UDP T 512x512 5.8 65.9 86.2 71.8 59.4 76.0 71.4
HRNet+UDP F 512x512 37.2 67.0 86.2 72.0 60.7 76.7 71.6
HRNet+UDP+AID F 512x512 37.2 68.4 88.1 74.9 62.7 77.1 73.0

HigherHRNet

Arch P2I Input size Speed(task/s) AP Ap .5 AP .75 AP (M) AP (L) AR
HigherHRNet(ori) T 512x512 - 67.1 - - 61.5 76.1 -
HigherHRNet T 512x512 9.4 67.2 86.1 72.9 61.8 76.1 72.2
HigherHRNet+UDP T 512x512 9.0 67.6 86.1 73.7 62.2 76.2 72.4
HigherHRNet F 512x512 24.1 67.1 86.1 73.6 61.7 75.9 72.0
HigherHRNet+UDP F 512x512 23.0 67.6 86.2 73.8 62.2 76.2 72.4
HigherHRNet+UDP+AID F 512x512 23.0 69.0 88.0 74.9 64.0 76.9 73.8

Note:

  • ori : Result from original HigherHrnet
  • mmpose : Pretrained models from mmpose
  • P2I : PROJECT2IMAGE
  • we use mmpose for codebase
  • the configurations of the baseline are HRNet-W32-512x512-batch16-lr0.001
  • Speed is tested with dist_test in mmpose codebase and 8 Gpus + 16 batchsize

Quick Start

(Recommend) For mmpose, please refer to MMPose

For hrnet, please refer to Hrnet

For RSN, please refer to RSN

Data preparation For coco, we provide the human detection result and pretrained model at BaiduDisk(dsa9)

Citation

If you use our code or models in your research, please cite with:

@inproceedings{cai2020learning,
  title={Learning Delicate Local Representations for Multi-Person Pose Estimation},
  author={Yuanhao Cai and Zhicheng Wang and Zhengxiong Luo and Binyi Yin and Angang Du and Haoqian Wang and Xinyu Zhou and Erjin Zhou and Xiangyu Zhang and Jian Sun},
  booktitle={ECCV},
  year={2020}
}
@article{huang2020joint,
  title={Joint coco and lvis workshop at eccv 2020: Coco keypoint challenge track technical report: Udp+},
  author={Huang, Junjie and Shan, Zengguang and Cai, Yuanhao and Guo, Feng and Ye, Yun and Chen, Xinze and Zhu, Zheng and Huang, Guan and Lu, Jiwen and Du, Dalong},
  year={2020}
}
Owner
Tsinghua University, Megvii Inc [email protected]
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022