This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

Overview

FFG-benchmarks

This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

What is Few-shot Font Generation (FFG)?

Few-shot font generation tasks aim to generate a new font library using only a few reference glyphs, e.g., less than 10 glyph images, without additional model fine-tuning at the test time [ref].

In this repository, we do not consider methods fine-tuning on the unseen style fonts.

Sub-documents

docs
├── Dataset.md
├── FTransGAN-Dataset.md
├── Inference.md
├── Evaluator.md
└── models
    ├── DM-Font.md
    ├── FUNIT.md
    ├── LF-Font.md
    └── MX-Font.md

Available models

  • FUNIT (Liu, Ming-Yu, et al. ICCV 2019) [pdf] [github]: not originally proposed for FFG tasks, but we modify the unpaired i2i framework to the paired i2i framework for FFG tasks.
  • DM-Font (Cha, Junbum, et al. ECCV 2020) [pdf] [github]: proposed for complete compositional scripts (e.g., Korean). If you want to test DM-Font in Chinese generation tasks, you have to modify the code (or use other models).
  • LF-Font (Park, Song, et al. AAAI 2021) [pdf] [github]: originally proposed to solve the drawback of DM-Font, but it still require component labels for generation. Our implementation allows to generate characters with unseen component.
  • MX-Font (Park, Song, et al. ICCV 2021) [pdf] [github]: generating fonts by employing multiple experts where each expert focuses on different local concepts.

Not available here, but you may also consider

Model overview

Model Provided in this repo? Chinese generation? Need component labels?
EMD (CVPR'18) X O X
FUNIT (ICCV'19) O O X
AGIS-Net (SIGGRAPH Asia'19) X O X
DM-Font (ECCV'20) O X O
LF-Font (AAAI'21) O O O
FTransGAN (WACV'21) X O X
MX-Font (ICCV'21) O O Only for training

Preparing Environments

Requirements

Our code is tested on Python >= 3.6 (we recommend conda) with the following libraries

torch >= 1.5
sconf
numpy
scipy
scikit-image
tqdm
jsonlib-python3
fonttools

Datasets

Korean / Chinese / ...

The full description is in docs/Dataset.md

We allow two formats for datasets:

  • TTF: We allow using the native true-type font (TTF) formats for datasets. It is storage-efficient and easy-to-use, particularly if you want to build your own dataset.
  • Images: We also allow rendered images for datasets, similar to ImageFoler (but a modified version). It is convenient when you want to generate a full font library from the un-digitalized characters (e.g., handwritings).

You can collect your own fonts from the following web sites (for non-commercial purpose):

Note that fonts are protected intellectual property and it is unable to release the collected font datasets unless license is cleaned-up. Many font generation papers do not publicly release their own datasets due to this license issue. We also face the same issue here. Therefore, we encourage the users to collect their own datasets from the web, or using the publicly avaiable datasets.

FTransGAN (Li, Chenhao, et al. WACV 2021) [pdf] [github] released the rendered image files for training and evaluating FFG models. We also make our repository able to use the font dataset provided by FTransGAN. More details can be found in docs/FTransGAN-Dataset.md.

Training

We separately provide model documents in docs/models as follows

Generation

Preparing reference images

Detailed instruction for preparing reference images is decribed in here.

Run test

Please refer following documents to train the model:

Evaluation

Detailed instructions for preparing evaluator and testing the generated images are decribed in here.

License

This project is distributed under MIT license, except FUNIT and base/modules/modules.py which is adopted from https://github.com/NVlabs/FUNIT.

FFG-benchmarks
Copyright (c) 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022