Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Overview

Cycle Consistent Adversarial Domain Adaptation (CyCADA)

A pytorch implementation of CyCADA.

If you use this code in your research please consider citing

@inproceedings{Hoffman_cycada2017,
       authors = {Judy Hoffman and Eric Tzeng and Taesung Park and Jun-Yan Zhu,
             and Phillip Isola and Kate Saenko and Alexei A. Efros and Trevor Darrell},
       title = {CyCADA: Cycle Consistent Adversarial Domain Adaptation},
       booktitle = {International Conference on Machine Learning (ICML)},
       year = 2018
}

Setup

  • Check out the repo (recursively will also checkout the CyCADA fork of the CycleGAN repo).
    git clone --recursive https://github.com/jhoffman/cycada_release.git cycada
  • Install python requirements
    • pip install -r requirements.txt

Train image adaptation only (digits)

  • Image adaptation builds on the work on CycleGAN. The submodule in this repo is a fork which also includes the semantic consistency loss.
  • Pre-trained image results for digits may be downloaded here
  • Producing SVHN as MNIST
    • For an example of how to train image adaptation on SVHN->MNIST, see cyclegan/train_cycada.sh. From inside the cyclegan subfolder run train_cycada.sh.
    • The snapshots will be stored in cyclegan/cycada_svhn2mnist_noIdentity. Inside test_cycada.sh set the epoch value to the epoch you wish to use and then run the script to generate 50 transformed images (to preview quickly) or run test_cycada.sh all to generate the full ~73K SVHN images as MNIST digits.
    • Results are stored inside cyclegan/results/cycada_svhn2mnist_noIdentity/train_75/images.
    • Note we use a dataset of mnist_svhn and for this experiment run in the reverse direction (BtoA), so the source (SVHN) images translated to look like MNIST digits will be stored as [label]_[imageId]_fake_B.png. Hence when images from this directory will be loaded later we will only images which match that naming convention.

Train feature adaptation only (digits)

  • The main script for feature adaptation can be found inside scripts/train_adda.py
  • Modify the data directory you which stores all digit datasets (or where they will be downloaded)

Train feature adaptation following image adaptation

  • Use the feature space adapt code with the data and models from image adaptation
  • For example: to train for the SVHN to MNIST shift, set src = 'svhn2mnist' and tgt = 'mnist' inside scripts/train_adda.py
  • Either download the relevant images above or run image space adaptation code and extract transferred images

Train Feature Adaptation for Semantic Segmentation

CyCADA pixel+feat SVHN2MNIST test(ckevin4747)

Owner
Hyunwoo Ko
Student Researcher in Korea University.
Hyunwoo Ko
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022