Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Overview

Cycle Consistent Adversarial Domain Adaptation (CyCADA)

A pytorch implementation of CyCADA.

If you use this code in your research please consider citing

@inproceedings{Hoffman_cycada2017,
       authors = {Judy Hoffman and Eric Tzeng and Taesung Park and Jun-Yan Zhu,
             and Phillip Isola and Kate Saenko and Alexei A. Efros and Trevor Darrell},
       title = {CyCADA: Cycle Consistent Adversarial Domain Adaptation},
       booktitle = {International Conference on Machine Learning (ICML)},
       year = 2018
}

Setup

  • Check out the repo (recursively will also checkout the CyCADA fork of the CycleGAN repo).
    git clone --recursive https://github.com/jhoffman/cycada_release.git cycada
  • Install python requirements
    • pip install -r requirements.txt

Train image adaptation only (digits)

  • Image adaptation builds on the work on CycleGAN. The submodule in this repo is a fork which also includes the semantic consistency loss.
  • Pre-trained image results for digits may be downloaded here
  • Producing SVHN as MNIST
    • For an example of how to train image adaptation on SVHN->MNIST, see cyclegan/train_cycada.sh. From inside the cyclegan subfolder run train_cycada.sh.
    • The snapshots will be stored in cyclegan/cycada_svhn2mnist_noIdentity. Inside test_cycada.sh set the epoch value to the epoch you wish to use and then run the script to generate 50 transformed images (to preview quickly) or run test_cycada.sh all to generate the full ~73K SVHN images as MNIST digits.
    • Results are stored inside cyclegan/results/cycada_svhn2mnist_noIdentity/train_75/images.
    • Note we use a dataset of mnist_svhn and for this experiment run in the reverse direction (BtoA), so the source (SVHN) images translated to look like MNIST digits will be stored as [label]_[imageId]_fake_B.png. Hence when images from this directory will be loaded later we will only images which match that naming convention.

Train feature adaptation only (digits)

  • The main script for feature adaptation can be found inside scripts/train_adda.py
  • Modify the data directory you which stores all digit datasets (or where they will be downloaded)

Train feature adaptation following image adaptation

  • Use the feature space adapt code with the data and models from image adaptation
  • For example: to train for the SVHN to MNIST shift, set src = 'svhn2mnist' and tgt = 'mnist' inside scripts/train_adda.py
  • Either download the relevant images above or run image space adaptation code and extract transferred images

Train Feature Adaptation for Semantic Segmentation

CyCADA pixel+feat SVHN2MNIST test(ckevin4747)

Owner
Hyunwoo Ko
Student Researcher in Korea University.
Hyunwoo Ko
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022