Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Overview

This repo contains the implementation of our paper:

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Paper Link

Replication

Python environment

pip install -e . # under DSLP directory
pip install tensorflow tensorboard sacremoses nltk Ninja omegaconf
pip install 'fuzzywuzzy[speedup]'
pip install hydra-core==1.0.6
pip install sacrebleu==1.5.1
pip install git+https://github.com/dugu9sword/lunanlp.git
git clone --recursive https://github.com/parlance/ctcdecode.git
cd ctcdecode && pip install .

Dataset

We downloaded the distilled data from FairSeq

Preprocessed by

TEXT=wmt14_ende_distill
python3 fairseq_cli/preprocess.py --source-lang en --target-lang de \
   --trainpref $TEXT/train.en-de --validpref $TEXT/valid.en-de --testpref $TEXT/test.en-de \
   --destdir data-bin/wmt14.en-de_kd --workers 40 --joined-dictionary

Or you can download all the binarized files here.

Hyperparameters

EN<->RO EN<->DE
--validate-interval-updates 300 500
number of tokens per batch 32K 128K
--dropout 0.3 0.1

Note:

  1. We found that label smoothing for CTC-based models are not useful (at least not with our implementation), it is suggested to keep --label-smoothing as 0 for them.
  2. Dropout rate plays a significant role for GLAT, CMLM, and the Vanilla NAT. On WMT'14 EN->De, for example, the Vanilla NAT with dropout 0.1 reaches 21.18 BLEU; but only gives 19.68 BLEU with dropout 0.3.

Training:

We provide the scripts for replicating the results on WMT'14 EN->DE task. For other tasks, you need to adapt the binary path, --source-lang, --target-lang, and some other hyperparameters accordingly.

GLAT with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_glat --criterion glat_loss --arch glat_sd --noise full_mask \ 
   --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 --glat-mode glat \ 
   --length-loss-factor 0.1 --pred-length-offset 

CMLM with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch glat_sd --noise full_mask \ 
   --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 \
   --length-loss-factor 0.1 --pred-length-offset 

Vanilla NAT with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_sd --noise full_mask \ 
   --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 \
   --length-loss-factor 0.1 --pred-length-offset 

Vanilla NAT with DSLP and Mixed Training:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_sd --noise full_mask \ 
   --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192  --ss-ratio 0.3 --fixed-ss-ratio --masked-loss \ 
   --length-loss-factor 0.1 --pred-length-offset 

CTC with DSLP:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_ctc_sd --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  --label-smoothing 0.0 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 

CTC with DSLP and Mixed Training:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_ctc_sd_ss --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  --label-smoothing 0.0 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 --ss-ratio 0.3 --fixed-ss-ratio

Evaluation

Average the last best 5 checkpoints with scripts/average_checkpoints.py, our results are based on either the best checkpoint or the averaged checkpoint, depending on their valid set BLEU.

fairseq-generate data-bin/wmt14.en-de_kd  --path PATH_TO_A_CHECKPOINT \
    --gen-subset test --task translation_lev --iter-decode-max-iter 0 \
    --iter-decode-eos-penalty 0 --beam 1 --remove-bpe --print-step --batch-size 100

Note: 1) Add --plain-ctc --model-overrides '{"ctc_beam_size": 1, "plain_ctc": True}' if it is CTC based; 2) Change the task to translation_glat if it is GLAT based.

Output

We in addition provide the output of CTC w/ DSLP, CTC w/ DSLP & Mixed Training, Vanilla NAT w/ DSLP, Vanilla NAT w/ DSLP with Mixed Training, GLAT w/ DSLP, and CMLM w/ DSLP for review purpose.

Model Reference Hypothesis
CTC w/ DSLP ref hyp
CTC w/ DSLP & Mixed Training ref hyp
Vanilla NAT w/ DSLP ref hyp
Vanilla NAT w/ DSLP & Mixed Training ref hyp
GLAT w/ DSLP ref hyp
CMLM w/ DSLP ref hyp

Note: The output is on WMT'14 EN-DE. The references are paired with hypotheses for each model.

Training Efficiency

We show the training efficiency of our DSLP model based on vanilla NAT model. Specifically, we compared the BLUE socres of vanilla NAT and vanilla NAT with DSLP & Mixed Training on the same traning time (in hours).

As we observed, our DSLP model achieves much higher BLUE scores shortly after the training started (~3 hours). It shows that our DSLP is much more efficient in training, as our model ahieves higher BLUE scores with the same amount of training cost.

Efficiency

We run the experiments with 8 Tesla V100 GPUs. The batch size is 128K tokens, and each model is trained with 300K updates.

Owner
Chenyang Huang
Stay hungry, stay foolish
Chenyang Huang
189 Jan 02, 2023
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022