Code repo for "Transformer on a Diet" paper

Overview

Transformer on a Diet

Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020).

Installation

pip install --pre --upgrade mxnet
pip install gluonnlp

Results

The results and the command line to reproduce the results on PTB dataset are as follows.

[1] Full (Val PPL 109.19 Test PPL 103.72)

$ cd scripts/language_model/
$ python transformer_language_model.py --model full --data ptb --emsize 320 --nhid 2000 --nlayers 3 --lr 10 --epochs 500 --batch_size 20 --bptt 70 --dropout 0.4 --dropout_h 0.25 --dropout_i 0 --dropout_e 0 --weight_drop 0 --tied --alpha 0 --beta 0 --lr_update_interval 100 --lr_update_factor 1 --num_heads 16 --scaled --units 320 --use_residual --max_src_length 1000 --warmup_steps 0 --first_window_size 1 --kernel_size 3 --d_base 2

[2] Dilated (Val PPL 115.67 Test PPL 110.92)

$ cd scripts/language_model/
$ python transformer_language_model.py --model dilated --data ptb --emsize 320 --nhid 2000 --nlayers 3 --lr 10 --epochs 500 --batch_size 20 --bptt 70 --dropout 0.4 --dropout_h 0.25 --dropout_i 0 --dropout_e 0 --weight_drop 0 --tied --alpha 0 --beta 0 --lr_update_interval 100 --lr_update_factor 1 --num_heads 16 --scaled --units 320 --use_residual --max_src_length 1000 --warmup_steps 0 --first_window_size 1 --kernel_size 3 --d_base 2

[3] Dilated-Memory (Val PPL 115.35 Test PPL 110.98)

$ cd scripts/language_model/
$ python transformer_language_model.py --model dilated_mem --data ptb --emsize 320 --nhid 2000 --nlayers 3 --lr 10 --epochs 500 --batch_size 20 --bptt 70 --dropout 0.4 --dropout_h 0.25 --dropout_i 0 --dropout_e 0 --weight_drop 0 --tied --alpha 0 --beta 0 --lr_update_interval 100 --lr_update_factor 1 --num_heads 16 --scaled --units 320 --use_residual --max_src_length 1000 --warmup_steps 0 --first_window_size 1 --kernel_size 3 --d_base 2

[4] Cascade (Val PPL 109.16 Test PPL 105.27)

$ cd scripts/language_model/
$ python transformer_language_model.py --model cascade --data ptb --emsize 320 --nhid 2000 --nlayers 3 --lr 10 --epochs 500 --batch_size 20 --bptt 70 --dropout 0.4 --dropout_h 0.25 --dropout_i 0 --dropout_e 0 --weight_drop 0 --tied --alpha 0 --beta 0 --lr_update_interval 100 --lr_update_factor 1 --num_heads 16 --scaled --units 320 --use_residual --max_src_length 1000 --warmup_steps 0 --first_window_size 4 --window_size_multiplier 2 --kernel_size 3 --d_base 2

Note that the command to reproduce the results on wikitext-2 would be updated soon.

Reference Paper

The bibtext entry of the reference paper is:

@article{transformerdiet2020,
   title={Transformer on a Diet},
   author={Chenguang Wang and Zihao Ye and Aston Zhang and Zheng Zhang and Alexander J. Smola},
   journal={ArXiv},
   year={2020},
   volume={abs/2002.06170}
}
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022