Code repo for "Transformer on a Diet" paper

Overview

Transformer on a Diet

Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020).

Installation

pip install --pre --upgrade mxnet
pip install gluonnlp

Results

The results and the command line to reproduce the results on PTB dataset are as follows.

[1] Full (Val PPL 109.19 Test PPL 103.72)

$ cd scripts/language_model/
$ python transformer_language_model.py --model full --data ptb --emsize 320 --nhid 2000 --nlayers 3 --lr 10 --epochs 500 --batch_size 20 --bptt 70 --dropout 0.4 --dropout_h 0.25 --dropout_i 0 --dropout_e 0 --weight_drop 0 --tied --alpha 0 --beta 0 --lr_update_interval 100 --lr_update_factor 1 --num_heads 16 --scaled --units 320 --use_residual --max_src_length 1000 --warmup_steps 0 --first_window_size 1 --kernel_size 3 --d_base 2

[2] Dilated (Val PPL 115.67 Test PPL 110.92)

$ cd scripts/language_model/
$ python transformer_language_model.py --model dilated --data ptb --emsize 320 --nhid 2000 --nlayers 3 --lr 10 --epochs 500 --batch_size 20 --bptt 70 --dropout 0.4 --dropout_h 0.25 --dropout_i 0 --dropout_e 0 --weight_drop 0 --tied --alpha 0 --beta 0 --lr_update_interval 100 --lr_update_factor 1 --num_heads 16 --scaled --units 320 --use_residual --max_src_length 1000 --warmup_steps 0 --first_window_size 1 --kernel_size 3 --d_base 2

[3] Dilated-Memory (Val PPL 115.35 Test PPL 110.98)

$ cd scripts/language_model/
$ python transformer_language_model.py --model dilated_mem --data ptb --emsize 320 --nhid 2000 --nlayers 3 --lr 10 --epochs 500 --batch_size 20 --bptt 70 --dropout 0.4 --dropout_h 0.25 --dropout_i 0 --dropout_e 0 --weight_drop 0 --tied --alpha 0 --beta 0 --lr_update_interval 100 --lr_update_factor 1 --num_heads 16 --scaled --units 320 --use_residual --max_src_length 1000 --warmup_steps 0 --first_window_size 1 --kernel_size 3 --d_base 2

[4] Cascade (Val PPL 109.16 Test PPL 105.27)

$ cd scripts/language_model/
$ python transformer_language_model.py --model cascade --data ptb --emsize 320 --nhid 2000 --nlayers 3 --lr 10 --epochs 500 --batch_size 20 --bptt 70 --dropout 0.4 --dropout_h 0.25 --dropout_i 0 --dropout_e 0 --weight_drop 0 --tied --alpha 0 --beta 0 --lr_update_interval 100 --lr_update_factor 1 --num_heads 16 --scaled --units 320 --use_residual --max_src_length 1000 --warmup_steps 0 --first_window_size 4 --window_size_multiplier 2 --kernel_size 3 --d_base 2

Note that the command to reproduce the results on wikitext-2 would be updated soon.

Reference Paper

The bibtext entry of the reference paper is:

@article{transformerdiet2020,
   title={Transformer on a Diet},
   author={Chenguang Wang and Zihao Ye and Aston Zhang and Zheng Zhang and Alexander J. Smola},
   journal={ArXiv},
   year={2020},
   volume={abs/2002.06170}
}
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022