FcaNet: Frequency Channel Attention Networks

Related tags

Deep LearningFcaNet
Overview

FcaNet: Frequency Channel Attention Networks

PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks".

alt text

Simplest usage

Models pretrained on ImageNet can be simply accessed by (without any configuration or installation):

model = torch.hub.load('cfzd/FcaNet', 'fca34' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca50' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca101' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca152' ,pretrained=True)

Install

Please see INSTALL.md

Models

Classification models on ImageNet

Due to the conversion between FP16 training and the provided FP32 models, the evaluation results are slightly different(max -0.06%/+0.05%) compared with the reported results.

Model Reported Evaluation Results Link
FcaNet34 75.07 75.02 GoogleDrive/BaiduDrive(code:m7v8)
FcaNet50 78.52 78.57 GoogleDrive/BaiduDrive(code:mgkk)
FcaNet101 79.64 79.63 GoogleDrive/BaiduDrive(code:8t0j)
FcaNet152 80.08 80.02 GoogleDrive/BaiduDrive(code:5yeq)

Detection and instance segmentation models on COCO

Model Backbone AP AP50 AP75 Link
Faster RCNN FcaNet50 39.0 61.1 42.3 GoogleDrive/BaiduDrive(code:q15c)
Faster RCNN FcaNet101 41.2 63.3 44.6 GoogleDrive/BaiduDrive(code:pgnx)
Mask RCNN Fca50 det
Fca50 seg
40.3
36.2
62.0
58.6
44.1
38.1
GoogleDrive/BaiduDrive(code:d9rn)

Training

Please see launch_training_classification.sh and launch_training_detection.sh for training on ImageNet and COCO, respectively.

Testing

Please see launch_eval_classification.sh and launch_eval_detection.sh for testing on ImageNet and COCO, respectively.

FAQ

Since the paper is uploaded to arxiv, many academic peers ask us: the proposed DCT basis can be viewed as a simple tensor, then how about learning the tensor directly? Why use DCT instead of learnable tensor? Learnable tensor can be better than DCT.

Our concrete answer is: the proposed DCT is better than the learnable way, although it is counter-intuitive.

Method ImageNet Top-1 Acc Link
Learnable tensor, random initialization 77.914 GoogleDrive/BaiduDrive(code:p2hl)
Learnable tensor, DCT initialization 78.352 GoogleDrive/BaiduDrive(code:txje)
Fixed tensor, random initialization 77.742 GoogleDrive/BaiduDrive(code:g5t9)
Fixed tensor, DCT initialization (Ours) 78.574 GoogleDrive/BaiduDrive(code:mgkk)

To verify this results, one can select the cooresponding types of tensor in the L73-L83 in model/layer.py, uncomment it and train the whole network.

TODO

  • Object detection models
  • Instance segmentation models
  • Fix the incorrect results of detection models
  • Make the switching between configs more easier
Comments
  • About the performance on cifar10 or cifar100.

    About the performance on cifar10 or cifar100.

    Thanks for your work!!

    Have you tried using fcanet to train classification tasks on cifar10 or cifar100?. If you have tried, what is the frequency components setting?

    opened by NNNNAI 14
  • 有关self.dct_h和self.dct_w的设置?

    有关self.dct_h和self.dct_w的设置?

    在这个类中MultiSpectralAttentionLayer有以下部分。 if h != self.dct_h or w != self.dct_w: x_pooled = torch.nn.functional.adaptive_avg_pool2d(x, (self.dct_h, self.dct_w)) # If you have concerns about one-line-change, don't worry. :) # In the ImageNet models, this line will never be triggered. # This is for compatibility in instance segmentation and object detection.

    如果我的任务是目标检测,我该怎么设置self.dct_h和self.dct_w?

    opened by XFR1998 6
  • 2d dct FLOPs computing method

    2d dct FLOPs computing method

    Hi, I noticed that in your paper you computed FCAnet model FLOPs.

    I wonder how do you compute the FLOPs of 2d dct? Could you provide your formula or code?

    Thanks!

    opened by TianhaoFu 5
  • What's the difference between FcaBottleneck and FcaBasicBlock ?

    What's the difference between FcaBottleneck and FcaBasicBlock ?

    As in your code, the FcaBottleneck expansion is 4 and FcaBasicBlock is 1, FcaBottleneck has one more layer of convolution than FcaBasicBlock, so how should I choose which module to use ?

    opened by meiguoofa 3
  • 关于通道分组

    关于通道分组

    你好,我是一名深度学习初学者,我添加了两个FCA模块使原模型的mIOU提升了2.3,效果很好; 然而对于通道分组,我有一些其他的看法; 如果分组的通道中表示不同的信息,每个分组再使用不同的频率分量,这似乎会造成更多的信息丢失吧,因为DCT可以看作是一种加权和,可以从论文中看到除了GAP是对每个通道上像素的一视同仁,其他的都是对空间上某一个或几个部分注意的更多,这显然是存在偏颇的,这似乎也能解释为什么单个频率分量实验中GAP的效果最好;在这种情况下,对通道进行分组,或许会造成更多的信息损失? 我仔细思考了下,我认为FCAwork的原因主要是存在通道冗余以及DCT加权形成的一种“互补” 因为存在通道冗余,进行通道分组时可能某些分组中的信息相近,并且这些分组的权重是“互补”的,比如一个权重矩阵更注重左半边,一个更注重右半边这样。似乎模块学习这种‘稀疏’的关系效果会更好。 可以认为FAC比SE更充分的使用了冗余的通道。 考虑了两个实验来证明, 不对减小输入的通道数,将FCA与原模型或是SE进行对比,当通道减少到一定程度时,信息没有那么冗余,这时应该会有大量的信息丢失,精度相较于原模型更低; 关于频率分量的选择,选取某些“对称”“互补”的权重矩阵,而不是通过单个频率分量的性能的来选择,并且去除那些"混乱”的权重矩阵,因为单个频率分量证明这种混乱的权重并没有简单分块的效果好 另外可以在大通道数使用大的分组,在小通道数使用小的分组,来检验是否会获得更好的性能

    不能完全表达我的意思,如有错误,恳请指出!

    opened by Asthestarsfalll 2
  • 跑您的模型的时候遇到的一些问题

    跑您的模型的时候遇到的一些问题

    您好,非常欣赏您的idea,所以尝试跑一下您的分类模型。 我下载了ImageNet2012数据集之后,尝试启动您的模型,遇到了以下问题,想请教一下是否我的哪些设置出错了?

    错误信息如下: Traceback (most recent call last): File "main.py", line 643, in main() File "main.py", line 389, in main avg_train_time = train(train_loader, model, criterion, optimizer, epoch, logger, scheduler) File "main.py", line 471, in train prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) File "main.py", line 631, in accuracy correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.

    opened by LihuiNb 2
  • selecting frequency components

    selecting frequency components

    Hi, I want to know how did you select the frequency components like Figure6? I want to select 1, 3, 6, 10 frequencies like zigzag DCT.

    And, I want to know the meaning of the numbers in the layer.py.

    num_freq = int(method[3:])
    if 'top' in method:
        all_top_indices_x = [0,0,6,0,0,1,1,4,5,1,3,0,0,0,3,2,4,6,3,5,5,2,6,5,5,3,3,4,2,2,6,1]
        all_top_indices_y = [0,1,0,5,2,0,2,0,0,6,0,4,6,3,5,2,6,3,3,3,5,1,1,2,4,2,1,1,3,0,5,3]
        mapper_x = all_top_indices_x[:num_freq]
        mapper_y = all_top_indices_y[:num_freq]
    elif 'low' in method:
        all_low_indices_x = [0,0,1,1,0,2,2,1,2,0,3,4,0,1,3,0,1,2,3,4,5,0,1,2,3,4,5,6,1,2,3,4]
        all_low_indices_y = [0,1,0,1,2,0,1,2,2,3,0,0,4,3,1,5,4,3,2,1,0,6,5,4,3,2,1,0,6,5,4,3]
        mapper_x = all_low_indices_x[:num_freq]
        mapper_y = all_low_indices_y[:num_freq]
    elif 'bot' in method:
        all_bot_indices_x = [6,1,3,3,2,4,1,2,4,4,5,1,4,6,2,5,6,1,6,2,2,4,3,3,5,5,6,2,5,5,3,6]
        all_bot_indices_y = [6,4,4,6,6,3,1,4,4,5,6,5,2,2,5,1,4,3,5,0,3,1,1,2,4,2,1,1,5,3,3,3]
        mapper_x = all_bot_indices_x[:num_freq]
        mapper_y = all_bot_indices_y[:num_freq]
    else:
        raise NotImplementedError
    return mapper_x, mapper_y
    
    opened by InukKang 1
  • 不大一致

    不大一致

    在layer.py中有: class MultiSpectralAttentionLayer(torch.nn.Module):中有 self.dct_layer = MultiSpectralDCTLayer(dct_h, dct_w, mapper_x, mapper_y, channel) 可见dct_h在前, dct_w在后 就是h在前,w在后 而在class MultiSpectralDCTLayer(nn.Module):中 def init(self, width, height, mapper_x, mapper_y, channel): 可见 width在前,height在后,就是w在前,h在后 请问这有什么说处么?我晕了

    opened by desertfex 1
  • dct_h and dct_w

    dct_h and dct_w

    How can I set dct_h and dct_w if i want to add FCA layer into another model. My feature maps for the layer I want to inset Fca layer are 160x160, 80x80, 40x40, 20x20

    Please advise.

    opened by myasser63 5
  • 想请问一下代码中bot是怎么选取的代表什么意思

    想请问一下代码中bot是怎么选取的代表什么意思

    elif 'bot' in method:
        all_bot_indices_x = [6,1,3,3,2,4,1,2,4,4,5,1,4,6,2,5,6,1,6,2,2,4,3,3,5,5,6,2,5,5,3,6]
        all_bot_indices_y = [6,4,4,6,6,3,1,4,4,5,6,5,2,2,5,1,4,3,5,0,3,1,1,2,4,2,1,1,5,3,3,3]
    
    opened by Liutingjin 1
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022