Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Overview

Interpreting Language Models Through Knowledge Graph Extraction

Idea: How do we interpret what a language model learns at various stages of training? Language models have been recently described as open knowledge bases. We can generate knowledge graphs by extracting relation triples from masked language models at sequential epochs or architecture variants to examine the knowledge acquisition process.

Dataset: Squad, Google-RE (3 flavors)

Models: BERT, RoBeRTa, DistilBert, training RoBERTa from scratch

Authors: Vinitra Swamy, Angelika Romanou, Martin Jaggi

This repository is the official implementation of the NeurIPS 2021 XAI4Debugging paper titled "Interpreting Language Models Through Knowledge Graph Extraction". Found this work useful? Please cite our paper.

Quick Start Guide

Pretrained Model (BERT, DistilBERT, RoBERTa) -> Knowlege Graph

  1. Install requirements and clone repository
git clone https://github.com/epfml/interpret-lm-knowledge.git
pip install git+https://github.com/huggingface/transformers   
pip install textacy
cd interpret-lm-knowledge/scripts
  1. Generate knowledge graphs and dataframes python run_knowledge_graph_experiments.py <dataset> <model> <use_spacy>
    e.g. squad Bert spacy
    e.g. re-place-birth Roberta

options:

dataset=squad - "squad", "re-place-birth", "re-date-birth", "re-place-death"  
model=Roberta - "Bert", "Roberta", "DistilBert"  
extractor=spacy - "spacy", "textacy", "custom"

See run_lm_experiments notebook for examples.

Train LM model from scratch -> Knowledge Graph

  1. Install requirements and clone repository
!pip install git+https://github.com/huggingface/transformers
!pip list | grep -E 'transformers|tokenizers'
!pip install textacy
  1. Run wikipedia_train_from_scratch_lm.ipynb.
  2. As included in the last cell of the notebook, you can run the KG generation experiments by:
from run_training_kg_experiments import *
run_experiments(tokenizer, model, unmasker, "Roberta3e")

Citations

@inproceedings{swamy2021interpreting,
 author = {Swamy, Vinitra and Romanou, Angelika and Jaggi, Martin},
 booktitle = {Advances in Neural Information Processing Systems, Workshop on eXplainable AI Approaches for Debugging and Diagnosis},
 title = {Interpreting Language Models Through Knowledge Graph Extraction},
 volume = {35},
 year = {2021}
}
Owner
EPFL Machine Learning and Optimization Laboratory
EPFL Machine Learning and Optimization Laboratory
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022