Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Overview

Interpreting Language Models Through Knowledge Graph Extraction

Idea: How do we interpret what a language model learns at various stages of training? Language models have been recently described as open knowledge bases. We can generate knowledge graphs by extracting relation triples from masked language models at sequential epochs or architecture variants to examine the knowledge acquisition process.

Dataset: Squad, Google-RE (3 flavors)

Models: BERT, RoBeRTa, DistilBert, training RoBERTa from scratch

Authors: Vinitra Swamy, Angelika Romanou, Martin Jaggi

This repository is the official implementation of the NeurIPS 2021 XAI4Debugging paper titled "Interpreting Language Models Through Knowledge Graph Extraction". Found this work useful? Please cite our paper.

Quick Start Guide

Pretrained Model (BERT, DistilBERT, RoBERTa) -> Knowlege Graph

  1. Install requirements and clone repository
git clone https://github.com/epfml/interpret-lm-knowledge.git
pip install git+https://github.com/huggingface/transformers   
pip install textacy
cd interpret-lm-knowledge/scripts
  1. Generate knowledge graphs and dataframes python run_knowledge_graph_experiments.py <dataset> <model> <use_spacy>
    e.g. squad Bert spacy
    e.g. re-place-birth Roberta

options:

dataset=squad - "squad", "re-place-birth", "re-date-birth", "re-place-death"  
model=Roberta - "Bert", "Roberta", "DistilBert"  
extractor=spacy - "spacy", "textacy", "custom"

See run_lm_experiments notebook for examples.

Train LM model from scratch -> Knowledge Graph

  1. Install requirements and clone repository
!pip install git+https://github.com/huggingface/transformers
!pip list | grep -E 'transformers|tokenizers'
!pip install textacy
  1. Run wikipedia_train_from_scratch_lm.ipynb.
  2. As included in the last cell of the notebook, you can run the KG generation experiments by:
from run_training_kg_experiments import *
run_experiments(tokenizer, model, unmasker, "Roberta3e")

Citations

@inproceedings{swamy2021interpreting,
 author = {Swamy, Vinitra and Romanou, Angelika and Jaggi, Martin},
 booktitle = {Advances in Neural Information Processing Systems, Workshop on eXplainable AI Approaches for Debugging and Diagnosis},
 title = {Interpreting Language Models Through Knowledge Graph Extraction},
 volume = {35},
 year = {2021}
}
Owner
EPFL Machine Learning and Optimization Laboratory
EPFL Machine Learning and Optimization Laboratory
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021