The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

Related tags

Deep LearningSIDE
Overview

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation

The source code of our work "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022 img|center

Installation

Requirements

Data Preparation

KITTI

Download the train-val split of 3DOP and SubCNN and place the data as below

  ${SIDE_ROOT}
  |-- data
  `-- |-- kitti
      `-- |-- training
          |   |-- image_2
          |   |-- label_2
          |   |-- calib
          |-- ImageSets_3dop
          |   |-- test.txt
          |   |-- train.txt
          |   |-- val.txt
          |   |-- trainval.txt
          `-- ImageSets_subcnn
              |-- test.txt
              |-- train.txt
              |-- val.txt
              |-- trainval.txt

Training

To train the kitti 3D object detection with dla on 4 GPUs, run

python testTrain.py stereo --exp_id sub_dla34 --dataset kitti --kitti_split subcnn --batch_size 16 --num_epochs 70 --lr_step 45,60 --gpus 0,1,2,3

By default, pytorch evenly splits the total batch size to each GPUs. --master_batch allows using different batchsize for the master GPU, which usually costs more memory than other GPUs. If it encounters GPU memory out, using slightly less batch size with the same learning is fine.

If the training is terminated before finishing, you can use the same commond with --resume to resume training. It will found the lastest model with the same exp_id.

Evaluation

To evaluate the kitti dataset, first compile the evaluation tool (from here):

cd SIDE_ROOT/src/tools/kitti_eval
g++ -o evaluate_object_3d_offline evaluate_object_3d_offline.cpp -O3

Then run the evaluation with pretrained model:

python testVal.py stereo --exp_id sub_dla34 --dataset kitti --kitti_split 3dop --resume

to evaluate the 3DOP split. For the subcnn split, change --kitti_split to subcnn and load the corresponding models.

License

SIDE itself is released under the MIT License (refer to the LICENSE file for details). Portions of the code are borrowed from CenterNet(anchor-free design), Stereo-RCNN(geometric constraint), DCNv2(deformable convolutions) and kitti_eval (KITTI dataset evaluation). Please refer to the original License of these projects (See NOTICE).

Reference

If you find our work useful in your research, please consider citing our paper:

@article{peng2021side,
  title={SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation},
  author={Peng, Xidong and Zhu, Xinge and Wang, Tai and Ma, Yuexin},
  journal={arXiv preprint arXiv:2108.09663},
  year={2021}
}
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022