A simple python library for fast image generation of people who do not exist.

Overview

Random Face

A simple python library for fast image generation of people who do not exist.

For more details, please refer to the [paper](https://arxiv.org/abs/2104.04767).

Requirements

  • Linux, Windows, MacOS
  • Python 3.8+
  • CPU compatible with OpenVINO.

Install package

pip install random_face

Install the latest version

git clone https://github.com/bes-dev/random_face.git
cd random_face
pip install -r requirements.txt
python download_model.py
pip install .

Demo

python -m random_face.demo

Example

import cv2
import random_face

engine = random_face.get_engine()
face = engine.get_random_face()
cv2.imshow("face", face)
cv2.waitKey()

Open In Colab Open In Gradio

Citation

@misc{belousov2021mobilestylegan,
      title={MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis},
      author={Sergei Belousov},
      year={2021},
      eprint={2104.04767},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

Simple-Image-Classification - Simple Image Classification Code (PyTorch)
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Code for
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

People movement type classifier with YOLOv4 detection and SORT tracking.
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

Comments
  • Explicitly specified the compatible openvino library version

    Explicitly specified the compatible openvino library version

    The latest openvino library 2022.x version is incompatible with this library. Hence updated the requirements file to specify the last compatible version of openvino library. Now the error is fixed and the library is working properly.

    More details are in https://github.com/bes-dev/random_face/issues/6

    bug 
    opened by comprakash 3
  • description of input/ouput of the models

    description of input/ouput of the models

    Hi, I've been trying to use the models using another framework, I tried to follow the python code to define de input and output of the two models unsuccessfully.

    So far I got:

    512 random values > Style model > 512 style values, truncated? > Synthesys model > final image.

    Should the random values be between 0 and 1? any additional requirement?

    So I need to know the expected values for each input/output, and how to truncate the style values.

    opened by vpenades 1
  • Error: Argument shapes are inconsistent

    Error: Argument shapes are inconsistent

    I am getting an error while trying a simple program. Could you please assist on how to fix this issue.

    engine = random_face.get_engine() random_face = engine.get_random_face()

    Traceback (most recent call last): File "./scripts/generate_random_fvs.py", line 8, in engine = random_face.get_engine() File "/home/omprakash/github/CassiniServer/venv/lib/python3.8/site-packages/random_face/random_face.py", line 29, in get_engine return EngineOpenvino(cfg) File "/home/omprakash/github/CassiniServer/venv/lib/python3.8/site-packages/random_face/engine_openvino.py", line 39, in init self.snet_exec = self.ie.load_network(network=self.snet, device_name="CPU") File "ie_api.pyx", line 413, in openvino.inference_engine.ie_api.IECore.load_network File "ie_api.pyx", line 457, in openvino.inference_engine.ie_api.IECore.load_network RuntimeError: Check 'PartialShape::broadcast_merge_into(pshape, node->get_input_partial_shape(i), autob)' failed at core/src/op/util/elementwise_args.cpp:30: While validating node 'v1::Multiply Multiply_9566 (Mul_39_copy[0]:f32{512,512,3,3}, Constant_9519[0]:f32{1,512,4,4}) -> (dynamic...)' with friendly_name 'Multiply_9566': Argument shapes are inconsistent.

    opened by OmPrakash4 1
  • how solve this issue?

    how solve this issue?

    Processing time: 0.1736280918121338 s.
    Press 'q' for quit
    qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "/usr/local/lib/python3.8/dist-packages/cv2/qt/plugins" even though it was found.
    This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.
    
    Available platform plugins are: xcb.
    
    Aborted (core dumped)
    
    opened by johnfelipe 1
Releases(2021.07.21.1)
Owner
Sergei Belousov
Sergei Belousov
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022