A simple python library for fast image generation of people who do not exist.

Overview

Random Face

A simple python library for fast image generation of people who do not exist.

For more details, please refer to the [paper](https://arxiv.org/abs/2104.04767).

Requirements

  • Linux, Windows, MacOS
  • Python 3.8+
  • CPU compatible with OpenVINO.

Install package

pip install random_face

Install the latest version

git clone https://github.com/bes-dev/random_face.git
cd random_face
pip install -r requirements.txt
python download_model.py
pip install .

Demo

python -m random_face.demo

Example

import cv2
import random_face

engine = random_face.get_engine()
face = engine.get_random_face()
cv2.imshow("face", face)
cv2.waitKey()

Open In Colab Open In Gradio

Citation

@misc{belousov2021mobilestylegan,
      title={MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis},
      author={Sergei Belousov},
      year={2021},
      eprint={2104.04767},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

Simple-Image-Classification - Simple Image Classification Code (PyTorch)
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Code for
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

People movement type classifier with YOLOv4 detection and SORT tracking.
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

Comments
  • Explicitly specified the compatible openvino library version

    Explicitly specified the compatible openvino library version

    The latest openvino library 2022.x version is incompatible with this library. Hence updated the requirements file to specify the last compatible version of openvino library. Now the error is fixed and the library is working properly.

    More details are in https://github.com/bes-dev/random_face/issues/6

    bug 
    opened by comprakash 3
  • description of input/ouput of the models

    description of input/ouput of the models

    Hi, I've been trying to use the models using another framework, I tried to follow the python code to define de input and output of the two models unsuccessfully.

    So far I got:

    512 random values > Style model > 512 style values, truncated? > Synthesys model > final image.

    Should the random values be between 0 and 1? any additional requirement?

    So I need to know the expected values for each input/output, and how to truncate the style values.

    opened by vpenades 1
  • Error: Argument shapes are inconsistent

    Error: Argument shapes are inconsistent

    I am getting an error while trying a simple program. Could you please assist on how to fix this issue.

    engine = random_face.get_engine() random_face = engine.get_random_face()

    Traceback (most recent call last): File "./scripts/generate_random_fvs.py", line 8, in engine = random_face.get_engine() File "/home/omprakash/github/CassiniServer/venv/lib/python3.8/site-packages/random_face/random_face.py", line 29, in get_engine return EngineOpenvino(cfg) File "/home/omprakash/github/CassiniServer/venv/lib/python3.8/site-packages/random_face/engine_openvino.py", line 39, in init self.snet_exec = self.ie.load_network(network=self.snet, device_name="CPU") File "ie_api.pyx", line 413, in openvino.inference_engine.ie_api.IECore.load_network File "ie_api.pyx", line 457, in openvino.inference_engine.ie_api.IECore.load_network RuntimeError: Check 'PartialShape::broadcast_merge_into(pshape, node->get_input_partial_shape(i), autob)' failed at core/src/op/util/elementwise_args.cpp:30: While validating node 'v1::Multiply Multiply_9566 (Mul_39_copy[0]:f32{512,512,3,3}, Constant_9519[0]:f32{1,512,4,4}) -> (dynamic...)' with friendly_name 'Multiply_9566': Argument shapes are inconsistent.

    opened by OmPrakash4 1
  • how solve this issue?

    how solve this issue?

    Processing time: 0.1736280918121338 s.
    Press 'q' for quit
    qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "/usr/local/lib/python3.8/dist-packages/cv2/qt/plugins" even though it was found.
    This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.
    
    Available platform plugins are: xcb.
    
    Aborted (core dumped)
    
    opened by johnfelipe 1
Releases(2021.07.21.1)
Owner
Sergei Belousov
Sergei Belousov
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022