PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Overview

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks.

Code, based on the PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks.

Install Requirements

Tested with python 3.8.

pip install -r requirements.txt

1. Incremental Hierarchical Tensor Rank Learning

1.1 Generating Data

Matrix Completion/Sensing

python matrix_factorization_data_generator.py --task_type completion
  • Setting task_type to "sensing" will generate matrix sensing data.
  • Use the -h flag for information on the customizable run arguments.

Tensor Completion/Sensing

python tensor_sensing_data_generator.py --task_type completion
  • Setting task_type to "sensing" will generate tensor sensing data.
  • Use the -h flag for information on the customizable run arguments.

1.2 Running Experiments

Matrix Factorization

python matrix_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/mf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

Tensor Factorization

python tensor_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/tf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

Hierarchical Tensor Factorization

python hierarchical_tensor_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/htf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

1.3 Plotting Results

Plotting metrics against the number of iterations for an experiment (or multiple experiments) can be done by:

python dynamical_analysis_results_multi_plotter.py \
--plot_config_path 
   

   
  • plot_config_path should point to a file with the plot configuration. For example, plot_configs/mf_tf_htf_dyn_plot_config.json is the configuration used to create the plot below. To run it, it suffices to fill in the checkpoint_path fields (checkpoints are created during training inside the respective experiment's folder).

Example plot:

2. Countering Locality Bias of Convolutional Networks via Regularization

2.1. Is Same Class

2.1.1 Generating Data

Generating train data is done by running:

python is_same_class_data_generator.py --train --num_samples 5000

For test data use:

python is_same_class_data_generator.py --num_samples 10000
  • Use the output_dir argument to set the output directory in which the datasets will be saved (default is ./data/is_same).
  • The flag train determines whether to generate the dataset using the train or test set of the original dataset.
  • Specify num_samples to set how many samples to generate.
  • Use the -h flag for information on the customizable run arguments.

2.1.2 Running Experiments

python is_same_class_experiments_runner.py \
--train_dataset_path 
   
     \
--test_dataset_path 
    
      \
--epochs 150 \
--outputs_dir "outputs/is_same_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 1 \
--save_every_num_val 1 \
--epoch_log_interval 1 \
--train_batch_log_interval 50 \
--stop_on_perfect_train_acc \
--stop_on_perfect_train_acc_patience 20 \
--model resnet18 \
--distance 0 \
--grad_change_reg_coeff 0

    
   
  • train_dataset_path and test_dataset_path are the paths of the train and test dataset files, respectively.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

2.1.3 Plotting Results

Plotting different regularization options against the task difficulty can be done by:

\ --error_bars_opacity 0.5 ">
python locality_bias_plotter.py \
--experiments_dir 
   
     \
--experiment_groups_dir_names 
     
     
       .. \
--per_experiment_group_y_axis_value_name 
       
       
         .. \ --per_experiment_group_label 
         
         
           .. \ --x_axis_value_name "distance" \ --plot_title "Is Same Class" \ --x_label "distance between images" \ --y_label "test accuracy (%)" \ --save_plot_to 
          
            \ --error_bars_opacity 0.5 
          
         
        
       
      
     
    
   
  • Set experiments_dir to the directory containing the experiments you would like to plot.
  • Specify after experiment_groups_dir_names the names of the experiment groups, each group name should correspond to a sub-directory with the group name under experiments_dir path.
  • Use per_experiment_group_y_axis_value_name to name the report value for each experiment. Name should match key in experiment's summary.json files. Use dot notation for nested keys.
  • per_experiment_group_label sets a label for the groups by the same order they were mentioned.
  • save_plot_to is the path to save the plot at.
  • Use x_axis_value_name to set the name of the value to use as the x-axis. This should match to a key in either summary.json or config.json files. Use dot notation for nested keys.
  • Use the -h flag for information on the customizable run arguments.

Example plots:

2.2. Pathfinder

2.2.1 Generating Data

To generate Pathfinder datasets, first run the following command to create raw image samples for all specified path lengths:

python pathfinder_raw_images_generator.py \
--num_samples 20000 \
--path_lengths 3 5 7 9
  • Use the output_dir argument to set the output directory in which the raw samples will be saved (default is ./data/pathfinder/raw).
  • The samples for each path length are separated to different directories.
  • Use the -h flag for information on the customizable run arguments.

Then, use the following command to create the dataset files for all path lengths (one dataset per length):

python pathfinder_data_generator.py \
--dataset_path data/pathfinder/raw \
--num_train_samples 10000 \
--num_test_samples 10000
  • dataset_path is the path to the directory of the raw images.
  • Use the output_dir argument to set the output directory in which the datasets will be saved (default is ./data/pathfinder).
  • Use the -h flag for information on the customizable run arguments.

2.2.2 Running Experiments

python pathfinder_experiments_runner.py \
--dataset_path 
   
     \
--epochs 150 \
--outputs_dir "outputs/pathfinder_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 1 \
--save_every_num_val 1 \
--epoch_log_interval 1 \
--train_batch_log_interval 50 \
--stop_on_perfect_train_acc \
--stop_on_perfect_train_acc_patience 20 \
--model resnet18 \
--grad_change_reg_coeff 0

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

2.2.3 Plotting Results

Plotting different regularization options against the task difficulty can be done by:

\ --error_bars_opacity 0.5">
python locality_bias_plotter.py \
--experiments_dir 
   
     \
--experiment_groups_dir_names 
     
     
       .. \
--per_experiment_group_y_axis_value_name 
       
       
         .. \ --per_experiment_group_label 
         
         
           .. \ --x_axis_value_name "dataset_path" \ --plot_title "Pathfinder" \ --x_label "path length" \ --y_label "test accuracy (%)" \ --x_axis_ticks 3 5 7 9 \ --save_plot_to 
          
            \ --error_bars_opacity 0.5 
          
         
        
       
      
     
    
   
  • Set experiments_dir to the directory containing the experiments you would like to plot.
  • Specify after experiment_groups_dir_names the names of the experiment groups, each group name should correspond to a sub-directory with the group name under experiments_dir path.
  • Use per_experiment_group_y_axis_value_name to name the report value for each experiment. Name should match key in experiment's summary.json files. Use dot notation for nested keys.
  • per_experiment_group_label sets a label for the groups by the same order they were mentioned.
  • save_plot_to is the path to save the plot at.
  • Use x_axis_value_name to set the name of the value to use as the x-axis. This should match to a key in either summary.json or config.json files. Use dot notation for nested keys.
  • Use the -h flag for information on the customizable run arguments.

Example plots:

Citation

For citing the paper, you can use:

@article{razin2022implicit,
  title={Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks},
  author={Razin, Noam and Maman, Asaf and Cohen, Nadav},
  journal={arXiv preprint arXiv:2201.11729},
  year={2022}
}
Owner
Asaf
MS.c Student Computer Science
Asaf
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021