Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Overview

Binomial Option Pricing Calculator

Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Background

A derivative is a financial instrument that derives its value from the price of an underlying asset. An option gives the owner the ability to buy or sell the underlying asset at pre-determined price. An option that allows the holder to buy the asset at the pre-determined price (also known as the exercise or strike price) is called a call option. An option that lets the owner sell the underlying asset at the strike price is called a put option. There are three key types of options, a European option allows the holder to exercise ('redeem') the option only at maturity of the option. An American option can be exercised any time before maturity. A Bermudan option is exercisable at pre-deteremined dates decided at the creation of the option.

The binomial pricing method is one of the three most common methods used to value options - the others being the Black-Scholes model and a Monte Carlo simulation. The method predicts the price of the underlying asset at intervals (branches) between now and maturity of the option contract. This creates a tree showing the price movements of the asset, which can be used to find the fair value of the option. Unlike Black-Scholes, the binomial method allows the intrinsic value of the option to be calculated prior to maturity, better representing the value of American and Bermudan options which have the option of early exercise.

Pricing options using this method is done by:

  1. Determining the magnitude that stock prices will rise or fall between each branch.
  2. Calculating the probability that the stock price will move upwards or downward.
  3. Forming the binomial stock price tree with the specified number of branches.
  4. Calculate the payoff of the option at maturity.
  5. Working backwards, value the option by discounting the value of the option at the following nodes using. If the option is American or Bermudan and exercisible at that branch, then the value of the option if it was exercised is calculated, if it is greater than the discoutned value, it becomes the calculated value of the branch.
  6. The value derived at the top of the tree is the fair value of the option today.

Features of the Script

  • Does not require any libraries - it will work in base python3 and immune to changes in libraries
  • Option type is specified as a parameter allowing easy implementations
  • Returns and displays the calculated stock tree

The following assumptions are made by the model:

  • No dividends are paid across the option's life
  • Risk-Free rate is constant across the option's life
  • The price will move up or down each period

Variables and Paramaters

The variables required are:

Name Symbol Description
Stock Price s The current price of the underlying asset (time 0)
Exercise Price x The strike price of the option contract
Time to Maturity t The time until maturity of the option contract (in years)
Risk-Free Rate r The current risk-free rate
Branches/Steps b The number of branches used to value the option
Volatility v The volatility of the price movements in the underlying asset

Optional variables are:

Name Symbol Description
Option Nationality nat 'A' for American (default), 'B' for Bermudan, 'E' for European
Option Type typ 'C' for Call (default), 'P' for Put
Print Results prnt True to enable printing (default), False to disable
Exercisible Periods exP The branches that a Bermudan option can be exercised

Related Projects

Beta calculator with stock data downloader: https://github.com/sammuhrai/beta-calculator

Disclaimer

Script is for educational purposes and is not to be taken as financial advice.

Owner
sammuhrai
sammuhrai
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
pyhsmm MITpyhsmm - Bayesian inference in HSMMs and HMMs. MIT

Bayesian inference in HSMMs and HMMs This is a Python library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and expli

Matthew Johnson 527 Dec 04, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
Important dataframe statistics with a single command

quick_eda Receiving dataframe statistics with one command Project description A python package for Data Scientists, Students, ML Engineers and anyone

Sven Eschlbeck 2 Dec 19, 2021
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023