Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

Overview

For SwapNet

Create a list.txt file containing all the images to process. This can be done with the GNU find command:

find path/to/input/folder -name '*.jpg' -o -name '*.png' > list.txt

Then run this to get the clothing segmentations

python evaluate_parsing_JPPNet-s2.py -d path/to/texture -l path/to/list.txt -o path/to/clothing

Joint Body Parsing & Pose Estimation Network (JPPNet)

Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin, "Look into Person: Joint Body Parsing & Pose Estimation Network and A New Benchmark", T-PAMI 2018.

Introduction

JPPNet is a state-of-art deep learning methord for human parsing and pose estimation built on top of Tensorflow.

This novel joint human parsing and pose estimation network incorporates the multiscale feature connections and iterative location refinement in an end-to-end framework to investigate efficient context modeling and then enable parsing and pose tasks that are mutually beneficial to each other. This unified framework achieves state-of-the-art performance for both human parsing and pose estimation tasks.

This distribution provides a publicly available implementation for the key model ingredients reported in our latest paper which is accepted by T-PAMI 2018.

We simplify the network to solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into the parsing results without resorting to extra supervision. There is also a public implementation of this self-supervised structure-sensitive JPPNet (SS-JPPNet).

Look into People (LIP) Dataset

The SSL is trained and evaluated on our LIP dataset for human parsing. Please check it for more model details. The dataset is also available at google drive and baidu drive.

Pre-trained models

We have released our trained models of JPPNet on LIP dataset at google drive and baidu drive.

Inference

  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Prepare the images and store in $HOME/datasets.
  3. Run evaluate_pose_JPPNet-s2.py for pose estimation and evaluate_parsing_JPPNet-s2.py for human parsing.
  4. The results are saved in $HOME/output

Training

  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Download LIP dataset or prepare your own data and store in $HOME/datasets.
  3. For LIP dataset, we have provided images, parsing labels, lists and the left-right flipping labels (labels_rev) for data augmentation. You need to generate the heatmaps of pose labels. We have provided a script for reference.
  4. Run train_JPPNet-s2.py to train the JPPNet with two refinement stages.
  5. Use evaluate_pose_JPPNet-s2.py and evaluate_parsing_JPPNet-s2.py to generate the results or evaluate the trained models.
  6. Note that the LIPReader class is only suit for labels in LIP for the left-right flipping augmentation. If you want to train on other datasets with different labels, you may have to re-write an image reader class.

Citation

If you use this code for your research, please cite our papers.

@article{liang2018look,
  title={Look into Person: Joint Body Parsing \& Pose Estimation Network and a New Benchmark},
  author={Liang, Xiaodan and Gong, Ke and Shen, Xiaohui and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2018},
  publisher={IEEE}
}

@InProceedings{Gong_2017_CVPR,
  author = {Gong, Ke and Liang, Xiaodan and Zhang, Dongyu and Shen, Xiaohui and Lin, Liang},
  title = {Look Into Person: Self-Supervised Structure-Sensitive Learning and a New Benchmark for Human Parsing},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {July},
  year = {2017}
}
Owner
Andrew Jong
Master's student at Carnegie Mellon in Robotics and AI. Studies multi-agent UAVs for wildfire applications.
Andrew Jong
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
LBK 26 Dec 28, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023